|
1. Find Inverse of matrix A using
1.1 Simple Inverse method
1.2 Gauss Elimination method
|
|
|
Find |
|
- `[[2,3,1],[0,5,6],[1,1,2]]`
- `[[2,1,-1],[1,0,-1],[1,1,2]]`
- `[[3,1,1],[-1,2,1],[1,1,1]]`
- `[[2,3],[4,10]]`
- `[[5,1],[4,2]]`
- `[[6,3],[4,5]]`
|
|
|
|
2. Solve Simultaneous Equations using
Gauss Jacobi method
2.1 Inverse Matrix method
2.2 Cramer's Rule method
2.3 Gauss Elimination (Jordan) method
2.4 Gauss Elimination (Back Substitution) method
2.5 Gauss Seidel method
2.6 Gauss Jacobi method
|
|
Enter Equations line by line OR ',' seperated
|
|
|
Find |
|
- `2x+y+z=5,3x+5y+2z=15,2x+y+4z=8`
- `2x+5y=16,3x+y=11`
- `2x+5y=21,x+2y=8`
- `2x+y=8,x+2y=1`
- `2x+3y-z=5,3x+2y+z=10,x-5y+3z=0`
- `x+y+z=3,2x-y-z=3,x-y+z=9`
- `x+y+z=7,x+2y+2z=13,x+3y+z=13`
- `2x-y+3z=1,-3x+4y-5z=0,x+3y-6z=0`
|
|
|
Solution |
Solution provided by AtoZmath.com
|
|
If you find my work useful, you could
|
Want to know about
|
|
|
|
|