Home

Solve any problem
(step by step solutions)
Input table (Matrix, Statistics)
Mode :
SolutionHelp
Solution will be displayed step by step (In 2 parts)
Solution
Find Adams bashforth predictor method y'=(x+y)/2,{{0,0.5,1,1.5},{2,2.636,3.595,4.968}},x=2

Solution:
Your problem `->` Adams bashforth predictor method y'=(x+y)/2,{{0,0.5,1,1.5},{2,2.636,3.595,4.968}},x=2


`y'=(x+y)/2`

Adam's Bashforth Predictor formula is
`y_(n+1,p) = y_n + h/24 (55y'_(n) - 59y'_(n-1) + 37y'_(n-2) - 9y'_(n-3))`

putting `n=3`, we get

`y_(4,p)=y_3 + h/24 (55y'_(3) - 59y'_2 + 37y'_1 - 9y'_0) ->(2)`

We have given that
`x_0=0,x_1=0.5,x_2=1,x_3=1.5`

`y_0=2,y_1=2.636,y_2=3.595,y_3=4.968`

`y'=(x+y)/2`

`y'_0=(x+y)/2=1` (where `x=0,y=2`)

`y'_1=(x+y)/2=1.568` (where `x=0.5,y=2.636`)

`y'_2=(x+y)/2=2.2975` (where `x=1,y=3.595`)

`y'_3=(x+y)/2=3.234` (where `x=1.5,y=4.968`)






Solution provided by AtoZmath.com
Any wrong solution, solution improvement, feedback then Submit Here
Want to know about AtoZmath.com and me
  
 

Share with your friends
 
Copyright © 2018. All rights reserved. Terms, Privacy