Home > Matrix Algebra calculators > Auto Detect the matrix type calculator

Solve any problem
(step by step solutions)
Input table (Matrix, Statistics)
Mode :
SolutionHelp
Solution
Find Is matrix [[-5,-8,0],[3,5,0],[1,2,-1]] [ Calculator, Method and examples ]

Solution:
Your problem `->` Is matrix [[-5,-8,0],[3,5,0],[1,2,-1]]




A matrix, in which number of rows and number of columns are equal, is called a square matrix.

`A` = 
`-5``-8``0`
`3``5``0`
`1``2``-1`


The number of rows(3) and number of columns(3) are equal, So `A` is a square matrix



A square matrix `A`, such that `|A| != 0`, is called nonsingular matrix.


`A` = 
`-5``-8``0`
`3``5``0`
`1``2``-1`


`|A|` = 
 `-5`  `-8`  `0` 
 `3`  `5`  `0` 
 `1`  `2`  `-1` 


 =
 `-5` × 
 `5`  `0` 
 `2`  `-1` 
 `+8` × 
 `3`  `0` 
 `1`  `-1` 
 `+0` × 
 `3`  `5` 
 `1`  `2` 


`=-5 xx (5 × (-1) - 0 × 2) +8 xx (3 × (-1) - 0 × 1) +0 xx (3 × 2 - 5 × 1)`

`=-5 xx (-5 +0) +8 xx (-3 +0) +0 xx (6 -5)`

`=-5 xx (-5) +8 xx (-3) +0 xx (1)`

`= 25 -24 +0`

`=1`


Here, `|A| != 0`, so `A` is nonsingular matrix



A square matrix `A` is called an involutary matrix, if `A^2 = I` where `I` is the identity matrix.


`A` = 
`-5``-8``0`
`3``5``0`
`1``2``-1`


`A×A`=
`-5``-8``0`
`3``5``0`
`1``2``-1`
×
`-5``-8``0`
`3``5``0`
`1``2``-1`


=
`-5×-5-8×3+0×1``-5×-8-8×5+0×2``-5×0-8×0+0×-1`
`3×-5+5×3+0×1``3×-8+5×5+0×2``3×0+5×0+0×-1`
`1×-5+2×3-1×1``1×-8+2×5-1×2``1×0+2×0-1×-1`


=
`25-24+0``40-40+0``0+0+0`
`-15+15+0``-24+25+0``0+0+0`
`-5+6-1``-8+10-2``0+0+1`


=
`1``0``0`
`0``1``0`
`0``0``1`



Here `A^2 = I`, so `A` is an involutary matrix



A square matrix `A` is called a periodic matrix, if `A^m = A` for some positive integer m.


`A` = 
`-5``-8``0`
`3``5``0`
`1``2``-1`


`A×A`=
`-5``-8``0`
`3``5``0`
`1``2``-1`
×
`-5``-8``0`
`3``5``0`
`1``2``-1`


=
`-5×-5-8×3+0×1``-5×-8-8×5+0×2``-5×0-8×0+0×-1`
`3×-5+5×3+0×1``3×-8+5×5+0×2``3×0+5×0+0×-1`
`1×-5+2×3-1×1``1×-8+2×5-1×2``1×0+2×0-1×-1`


=
`25-24+0``40-40+0``0+0+0`
`-15+15+0``-24+25+0``0+0+0`
`-5+6-1``-8+10-2``0+0+1`


=
`1``0``0`
`0``1``0`
`0``0``1`



`(A^2)×A`=
`1``0``0`
`0``1``0`
`0``0``1`
×
`-5``-8``0`
`3``5``0`
`1``2``-1`


=
`1×-5+0×3+0×1``1×-8+0×5+0×2``1×0+0×0+0×-1`
`0×-5+1×3+0×1``0×-8+1×5+0×2``0×0+1×0+0×-1`
`0×-5+0×3+1×1``0×-8+0×5+1×2``0×0+0×0+1×-1`


=
`-5+0+0``-8+0+0``0+0+0`
`0+3+0``0+5+0``0+0+0`
`0+0+1``0+0+2``0+0-1`


=
`-5``-8``0`
`3``5``0`
`1``2``-1`



Here `A^3 = A`, so `A` is a periodic matrix of period 2








Solution provided by AtoZmath.com
Any wrong solution, solution improvement, feedback then Submit Here
Want to know about AtoZmath.com and me
  
 

 
Copyright © 2019. All rights reserved. Terms, Privacy





We use cookies to improve your experience on our site and to show you relevant advertising. By browsing this website, you agree to our use of cookies. Learn more