Home > Matrix Algebra calculators > Eigenvectors calculator

Solve any problem
(step by step solutions)
Input table (Matrix, Statistics)
Mode :
SolutionHelp
Solution
Find eigenvectors [[8,-6,2],[-6,7,-4],[2,-4,3]]

Solution:
Your problem `->` eigenvectors [[8,-6,2],[-6,7,-4],[2,-4,3]]


`|A-lamdaI|=0`

 `(8-lamda)`  `-6`  `2` 
 `-6`  `(7-lamda)`  `-4` 
 `2`  `-4`  `(3-lamda)` 
 = 0


`:.(8-lamda)((7-lamda) × (3-lamda) - (-4) × (-4))-(-6)((-6) × (3-lamda) - (-4) × 2)+2((-6) × (-4) - (7-lamda) × 2)=0`

`:.(8-lamda)((21-10lamda+lamda^2)-16)+6((-18+6lamda)-(-8))+2(24-(14-2lamda))=0`

`:.(8-lamda)(5-10lamda+lamda^2)+6(-10+6lamda)+2(10+2lamda)=0`

`:. (40-85lamda+18lamda^2-lamda^3)+(-60+36lamda)+(20+4lamda)=0`

`:.(-lamda^3+18lamda^2-45lamda)=0`

`:.-lamda(lamda-3)(lamda-15)=0`

`:.lamda=0 or(lamda-3)=0 or(lamda-15)=0 `

`:.` The eigenvalues of the matrix A are given by `lamda=0,3,15`,

1. Eigenvectors for `lamda=0`




1. Eigenvectors for `lamda=0`

`A-lamdaI = `
8-62
-67-4
2-43
 - `0` 
100
010
001


 = 
`8``-6``2`
`-6``7``-4`
`2``-4``3`


Now, reduce this matrix
`R_1 larr R_1-:8`

 = 
 `1` `1=8-:8`
`R_1 larr R_1-:8`
 `-3/4` `-3/4=-6-:8`
`R_1 larr R_1-:8`
 `1/4` `1/4=2-:8`
`R_1 larr R_1-:8`
`-6``7``-4`
`2``-4``3`


`R_2 larr R_2+6xx R_1`

 = 
`1``-3/4``1/4`
 `0` `0=-6+6xx1`
`R_2 larr R_2+6xx R_1`
 `5/2` `5/2=7+6xx-3/4`
`R_2 larr R_2+6xx R_1`
 `-5/2` `-5/2=-4+6xx1/4`
`R_2 larr R_2+6xx R_1`
`2``-4``3`


`R_3 larr R_3-2xx R_1`

 = 
`1``-3/4``1/4`
`0``5/2``-5/2`
 `0` `0=2-2xx1`
`R_3 larr R_3-2xx R_1`
 `-5/2` `-5/2=-4-2xx-3/4`
`R_3 larr R_3-2xx R_1`
 `5/2` `5/2=3-2xx1/4`
`R_3 larr R_3-2xx R_1`


`R_2 larr R_2xx2/5`

 = 
`1``-3/4``1/4`
 `0` `0=0xx2/5`
`R_2 larr R_2xx2/5`
 `1` `1=5/2xx2/5`
`R_2 larr R_2xx2/5`
 `-1` `-1=-5/2xx2/5`
`R_2 larr R_2xx2/5`
`0``-5/2``5/2`


`R_1 larr R_1+3/4xx R_2`

 = 
 `1` `1=1+3/4xx0`
`R_1 larr R_1+3/4xx R_2`
 `0` `0=-3/4+3/4xx1`
`R_1 larr R_1+3/4xx R_2`
 `-1/2` `-1/2=1/4+3/4xx-1`
`R_1 larr R_1+3/4xx R_2`
`0``1``-1`
`0``-5/2``5/2`


`R_3 larr R_3+5/2xx R_2`

 = 
`1``0``-1/2`
`0``1``-1`
 `0` `0=0+5/2xx0`
`R_3 larr R_3+5/2xx R_2`
 `0` `0=-5/2+5/2xx1`
`R_3 larr R_3+5/2xx R_2`
 `0` `0=5/2+5/2xx-1`
`R_3 larr R_3+5/2xx R_2`


The system associated with the eigenvalue `lamda=0`

`(A-0I)`
`x_1`
`x_2`
`x_3`
 = 
`1``0``-1/2`
`0``1``-1`
`0``0``0`
 
`x_1`
`x_2`
`x_3`
 = 
`0`
`0`
`0`


`=>x_1-1/2x_3=0,x_2-x_3=0`

`=>x_1=1/2x_3,x_2=x_3`

`:.` eigenvectors corresponding to the eigenvalue `lamda=0` is

`v=`
`1/2x_3`
`x_3`
`x_3`


Let `x_3=1`

`v_1=`
`1/2`
`1`
`1`



2. Eigenvectors for `lamda=3`




2. Eigenvectors for `lamda=3`

`A-lamdaI = `
8-62
-67-4
2-43
 - `3` 
100
010
001


 = 
8-62
-67-4
2-43
 - 
300
030
003

 = 
`5``-6``2`
`-6``4``-4`
`2``-4``0`


Now, reduce this matrix
interchanging rows `R_1 harr R_2`

 = 
`-6``4``-4`
`5``-6``2`
`2``-4``0`


`R_1 larr R_1-:-6`

 = 
 `1` `1=-6-:-6`
`R_1 larr R_1-:-6`
 `-2/3` `-2/3=4-:-6`
`R_1 larr R_1-:-6`
 `2/3` `2/3=-4-:-6`
`R_1 larr R_1-:-6`
`5``-6``2`
`2``-4``0`


`R_2 larr R_2-5xx R_1`

 = 
`1``-2/3``2/3`
 `0` `0=5-5xx1`
`R_2 larr R_2-5xx R_1`
 `-8/3` `-8/3=-6-5xx-2/3`
`R_2 larr R_2-5xx R_1`
 `-4/3` `-4/3=2-5xx2/3`
`R_2 larr R_2-5xx R_1`
`2``-4``0`


`R_3 larr R_3-2xx R_1`

 = 
`1``-2/3``2/3`
`0``-8/3``-4/3`
 `0` `0=2-2xx1`
`R_3 larr R_3-2xx R_1`
 `-8/3` `-8/3=-4-2xx-2/3`
`R_3 larr R_3-2xx R_1`
 `-4/3` `-4/3=0-2xx2/3`
`R_3 larr R_3-2xx R_1`


`R_2 larr R_2xx-3/8`

 = 
`1``-2/3``2/3`
 `0` `0=0xx-3/8`
`R_2 larr R_2xx-3/8`
 `1` `1=-8/3xx-3/8`
`R_2 larr R_2xx-3/8`
 `1/2` `1/2=-4/3xx-3/8`
`R_2 larr R_2xx-3/8`
`0``-8/3``-4/3`


`R_1 larr R_1+2/3xx R_2`

 = 
 `1` `1=1+2/3xx0`
`R_1 larr R_1+2/3xx R_2`
 `0` `0=-2/3+2/3xx1`
`R_1 larr R_1+2/3xx R_2`
 `1` `1=2/3+2/3xx1/2`
`R_1 larr R_1+2/3xx R_2`
`0``1``1/2`
`0``-8/3``-4/3`


`R_3 larr R_3+8/3xx R_2`

 = 
`1``0``1`
`0``1``1/2`
 `0` `0=0+8/3xx0`
`R_3 larr R_3+8/3xx R_2`
 `0` `0=-8/3+8/3xx1`
`R_3 larr R_3+8/3xx R_2`
 `0` `0=-4/3+8/3xx1/2`
`R_3 larr R_3+8/3xx R_2`


The system associated with the eigenvalue `lamda=3`

`(A-3I)`
`x_1`
`x_2`
`x_3`
 = 
`1``0``1`
`0``1``1/2`
`0``0``0`
 
`x_1`
`x_2`
`x_3`
 = 
`0`
`0`
`0`


`=>x_1+x_3=0,x_2+1/2x_3=0`

`=>x_1=-x_3,x_2=-1/2x_3`

`:.` eigenvectors corresponding to the eigenvalue `lamda=3` is

`v=`
`-x_3`
`-1/2x_3`
`x_3`


Let `x_3=1`

`v_2=`
`-1`
`-1/2`
`1`



3. Eigenvectors for `lamda=15`




3. Eigenvectors for `lamda=15`

`A-lamdaI = `
8-62
-67-4
2-43
 - `15` 
100
010
001


 = 
8-62
-67-4
2-43
 - 
1500
0150
0015

 = 
`-7``-6``2`
`-6``-8``-4`
`2``-4``-12`


Now, reduce this matrix
`R_1 larr R_1-:-7`

 = 
 `1` `1=-7-:-7`
`R_1 larr R_1-:-7`
 `6/7` `6/7=-6-:-7`
`R_1 larr R_1-:-7`
 `-2/7` `-2/7=2-:-7`
`R_1 larr R_1-:-7`
`-6``-8``-4`
`2``-4``-12`


`R_2 larr R_2+6xx R_1`

 = 
`1``6/7``-2/7`
 `0` `0=-6+6xx1`
`R_2 larr R_2+6xx R_1`
 `-20/7` `-20/7=-8+6xx6/7`
`R_2 larr R_2+6xx R_1`
 `-40/7` `-40/7=-4+6xx-2/7`
`R_2 larr R_2+6xx R_1`
`2``-4``-12`


`R_3 larr R_3-2xx R_1`

 = 
`1``6/7``-2/7`
`0``-20/7``-40/7`
 `0` `0=2-2xx1`
`R_3 larr R_3-2xx R_1`
 `-40/7` `-40/7=-4-2xx6/7`
`R_3 larr R_3-2xx R_1`
 `-80/7` `-80/7=-12-2xx-2/7`
`R_3 larr R_3-2xx R_1`


interchanging rows `R_2 harr R_3`

 = 
`1``6/7``-2/7`
`0``-40/7``-80/7`
`0``-20/7``-40/7`


`R_2 larr R_2xx-7/40`

 = 
`1``6/7``-2/7`
 `0` `0=0xx-7/40`
`R_2 larr R_2xx-7/40`
 `1` `1=-40/7xx-7/40`
`R_2 larr R_2xx-7/40`
 `2` `2=-80/7xx-7/40`
`R_2 larr R_2xx-7/40`
`0``-20/7``-40/7`


`R_1 larr R_1-6/7xx R_2`

 = 
 `1` `1=1-6/7xx0`
`R_1 larr R_1-6/7xx R_2`
 `0` `0=6/7-6/7xx1`
`R_1 larr R_1-6/7xx R_2`
 `-2` `-2=-2/7-6/7xx2`
`R_1 larr R_1-6/7xx R_2`
`0``1``2`
`0``-20/7``-40/7`


`R_3 larr R_3+20/7xx R_2`

 = 
`1``0``-2`
`0``1``2`
 `0` `0=0+20/7xx0`
`R_3 larr R_3+20/7xx R_2`
 `0` `0=-20/7+20/7xx1`
`R_3 larr R_3+20/7xx R_2`
 `0` `0=-40/7+20/7xx2`
`R_3 larr R_3+20/7xx R_2`


The system associated with the eigenvalue `lamda=15`

`(A-15I)`
`x_1`
`x_2`
`x_3`
 = 
`1``0``-2`
`0``1``2`
`0``0``0`
 
`x_1`
`x_2`
`x_3`
 = 
`0`
`0`
`0`


`=>x_1-2x_3=0,x_2+2x_3=0`

`=>x_1=2x_3,x_2=-2x_3`

`:.` eigenvectors corresponding to the eigenvalue `lamda=15` is

`v=`
`2x_3`
`-2x_3`
`x_3`


Let `x_3=1`

`v_3=`
`2`
`-2`
`1`








Solution provided by AtoZmath.com
Any wrong solution, solution improvement, feedback then Submit Here
Want to know about AtoZmath.com and me
  
 

Share with your friends
 
Copyright © 2018. All rights reserved. Terms, Privacy