Home > Algebra calculators > Division of two polynomials calculator

Solve any problem
(step by step solutions)
Input table (Matrix, Statistics)
Mode :
SolutionHelp
Solution
Find long division (x^4+6x^2+2)/(x^2+5) [ Calculator, Method and examples ]

Solution:
Your problem `->` long division (x^4+6x^2+2)/(x^2+5)


Final Solution
 ```x^2``+``0x``+``1`  
`color{blue}{x^2+5}``` `x^4``+` `0x^3``+` `6x^2``+` `0x``+` `2`  
 ```x^4``+``5x^2` `x^2 xx (color{blue}{x^2+5})`
 `` `0x^3``+` `x^2``+` `0x``+` `2`  
 ```0x^3``+``0x` `0x xx (color{blue}{x^2+5})`
 `` `x^2``+` `2`  
 ```x^2``+``5` `color{green}{1} xx (color{blue}{x^2+5})`
 `-` `3`  

Final answer `= "Quotient" + (color{Magenta}{"Remainder"})/(color{blue}{"Divisor"})`.
`:.` Final answer = `x^2+0x+1 + (color{Magenta}{-3})/(color{blue}{x^2+5})`
 
Here, Divisor = `x^2+5`
Dividend = `x^4+6x^2+2`
Quotient = `x^2+0x+1`
Remainder = `-3`



Step by step solutions
Step - 1 :
1. Divide the first term of the dividend by the first term of the divisor : `(x^4)/(x^2)=color{green}{x^2}`

2. Write down the calculated result `color{green}{x^2}` in the upper part of the table.

3. Multiply it by the divisor `color{green}{x^2} xx (color{blue}{x^2+5})=color{red}{x^4+5x^2}`

4. Subtract this result from the dividend
`(x^4+0x^3+6x^2+0x+2)-(color{red}{x^4+5x^2})=color{Magenta}{0x^3+x^2+0x+2}`

 ```x^2`  
`color{blue}{x^2+5}``` `x^4``+` `0x^3``+` `6x^2``+` `0x``+` `2`  
 ```x^4``+``5x^2` `color{green}{x^2} xx (color{blue}{x^2+5})`
 `` `0x^3``+` `x^2``+` `0x``+` `2`  


Step - 2 :
1. Divide the first term of the dividend by the first term of the divisor : `(0x^3)/(x^2)=color{green}{0}`

2. Write down the calculated result `color{green}{0}` in the upper part of the table.

3. Multiply it by the divisor `color{green}{0} xx (color{blue}{x^2+5})=color{red}{0x^3+0x}`

4. Subtract this result from the remainder
`(0x^3+x^2+0x+2)-(color{red}{0x^3+0x})=color{Magenta}{x^2+2}`

 ```x^2``+``0x`  
`color{blue}{x^2+5}``` `x^4``+` `0x^3``+` `6x^2``+` `0x``+` `2`  
 ```x^4``+``5x^2` `x^2 xx (color{blue}{x^2+5})`
 `` `0x^3``+` `x^2``+` `0x``+` `2`  
 ```0x^3``+``0x` `color{green}{0x} xx (color{blue}{x^2+5})`
 `` `x^2``+` `2`  


Step - 3 :
1. Divide the first term of the dividend by the first term of the divisor : `(x^2)/(x^2)=color{green}{1}`

2. Write down the calculated result `color{green}{1}` in the upper part of the table.

3. Multiply it by the divisor `color{green}{1} xx (color{blue}{x^2+5})=color{red}{x^2+5}`

4. Subtract this result from the remainder
`(x^2+2)-(color{red}{x^2+5})=color{Magenta}{-3}`

 ```x^2``+``0x``+``1`  
`color{blue}{x^2+5}``` `x^4``+` `0x^3``+` `6x^2``+` `0x``+` `2`  
 ```x^4``+``5x^2` `x^2 xx (color{blue}{x^2+5})`
 `` `0x^3``+` `x^2``+` `0x``+` `2`  
 ```0x^3``+``0x` `0x xx (color{blue}{x^2+5})`
 `` `x^2``+` `2`  
 ```x^2``+``5` `color{green}{1} xx (color{blue}{x^2+5})`
 `-` `3`  







Solution provided by AtoZmath.com
Any wrong solution, solution improvement, feedback then Submit Here
Want to know about AtoZmath.com and me
  
 

 
Copyright © 2019. All rights reserved. Terms, Privacy





We use cookies to improve your experience on our site and to show you relevant advertising. By browsing this website, you agree to our use of cookies. Learn more