Home > Algebra calculators > Division of two polynomials calculator

Solve any problem
(step by step solutions)
Input table (Matrix, Statistics)
Mode :
SolutionHelp
Solution
Find long division (x^4+6x^2+2)/(x^2+5)

Solution:
Your problem `->` long division (x^4+6x^2+2)/(x^2+5)


Final Solution
 ```x^2``+``0x``+``1`  
`color{blue}{x^2+5}``` `x^4``+` `0x^3``+` `6x^2``+` `0x``+` `2`  
 ```x^4``+``5x^2` `x^2 xx (color{blue}{x^2+5})`
 `` `0x^3``+` `x^2``+` `0x``+` `2`  
 ```0x^3``+``0x` `0x xx (color{blue}{x^2+5})`
 `` `x^2``+` `2`  
 ```x^2``+``5` `color{green}{1} xx (color{blue}{x^2+5})`
 `-` `3`  

Final answer `= "Quotient" + (color{Magenta}{"Remainder"})/(color{blue}{"Divisor"})`.
`:.` Final answer = `x^2+0x+1 + (color{Magenta}{-3})/(color{blue}{x^2+5})`
 
Here, Divisor = `x^2+5`
Dividend = `x^4+6x^2+2`
Quotient = `x^2+0x+1`
Remainder = `-3`



Step by step solutions
Step - 1 :
1. Divide the first term of the dividend by the first term of the divisor : `(x^4)/(x^2)=color{green}{x^2}`

2. Write down the calculated result `color{green}{x^2}` in the upper part of the table.

3. Multiply it by the divisor `color{green}{x^2} xx (color{blue}{x^2+5})=color{red}{x^4+5x^2}`

4. Subtract this result from the dividend
`(x^4+0x^3+6x^2+0x+2)-(color{red}{x^4+5x^2})=color{Magenta}{0x^3+x^2+0x+2}`

 ```x^2`  
`color{blue}{x^2+5}``` `x^4``+` `0x^3``+` `6x^2``+` `0x``+` `2`  
 ```x^4``+``5x^2` `color{green}{x^2} xx (color{blue}{x^2+5})`
 `` `0x^3``+` `x^2``+` `0x``+` `2`  


Step - 2 :
1. Divide the first term of the dividend by the first term of the divisor : `(0x^3)/(x^2)=color{green}{0}`

2. Write down the calculated result `color{green}{0}` in the upper part of the table.

3. Multiply it by the divisor `color{green}{0} xx (color{blue}{x^2+5})=color{red}{0x^3+0x}`

4. Subtract this result from the remainder
`(0x^3+x^2+0x+2)-(color{red}{0x^3+0x})=color{Magenta}{x^2+2}`

 ```x^2``+``0x`  
`color{blue}{x^2+5}``` `x^4``+` `0x^3``+` `6x^2``+` `0x``+` `2`  
 ```x^4``+``5x^2` `x^2 xx (color{blue}{x^2+5})`
 `` `0x^3``+` `x^2``+` `0x``+` `2`  
 ```0x^3``+``0x` `color{green}{0x} xx (color{blue}{x^2+5})`
 `` `x^2``+` `2`  


Step - 3 :
1. Divide the first term of the dividend by the first term of the divisor : `(x^2)/(x^2)=color{green}{1}`

2. Write down the calculated result `color{green}{1}` in the upper part of the table.

3. Multiply it by the divisor `color{green}{1} xx (color{blue}{x^2+5})=color{red}{x^2+5}`

4. Subtract this result from the remainder
`(x^2+2)-(color{red}{x^2+5})=color{Magenta}{-3}`

 ```x^2``+``0x``+``1`  
`color{blue}{x^2+5}``` `x^4``+` `0x^3``+` `6x^2``+` `0x``+` `2`  
 ```x^4``+``5x^2` `x^2 xx (color{blue}{x^2+5})`
 `` `0x^3``+` `x^2``+` `0x``+` `2`  
 ```0x^3``+``0x` `0x xx (color{blue}{x^2+5})`
 `` `x^2``+` `2`  
 ```x^2``+``5` `color{green}{1} xx (color{blue}{x^2+5})`
 `-` `3`  







Solution provided by AtoZmath.com
Any wrong solution, solution improvement, feedback then Submit Here
Want to know about AtoZmath.com and me
  
 

Share with your friends, if solutions are helpful to you.
 
Copyright © 2018. All rights reserved. Terms, Privacy