Home > Algebra calculators > Factoring Polynomials example


Factoring Polynomials example ( Enter your problem )
  1. Formula
  2. Examples

2. Examples


Type-1 (Taking common) Examples...
(1) `ax + a + 2x + 2`
`=(ax + a) + (2x + 2)`
`=a(x + 1) + 2(x + 1)`
`=(x + 1)(a + 2)`

Type-2 (Difference of squares) Examples...
(1) `25x^2 - 36`
`=(5x)^2 - (6)^2`
`=(5x - 6)(5x + 6)`

Type-3 (Sum and Difference of cubes) Examples...
(1) `x^3 + 27`
`=(x)^3 + (3)^3`
`=(x + 3)(x^2 - (x)(3) + (3)^2)`
`=(x + 3)(x^2 - 3x + 9)`

Type-4 (Whole square of a bionomial) Examples...
(1) `4x^2 + 12xy + 9y^2`
`=(2x)^2 + 2(2x)(3y) + (3y)^2`
`=(2x + 3y)^2`

Type-5 (Splitting the middle term of a Quadratic Equation) Examples...
(1) `x^2 + 10x + 24`
`=x^2 + 4x + 6x + 24`
`=x(x + 4) + 6(x + 4)`
`=(x + 4)(x + 6)`

Type-6 (Whole square of a trinomial) Examples...
(1) `4x^2 + y^2 + 1 + 4xy + 4x + 2y`
`=(2x)^2 + (y)^2 + (1)^2 + 2(2x)(y) + 2(2x)(1) + 2(y)(1)`
`=(2x + y + 1)^2`

Type-7 (Factorization with the help of factor theorem) Examples...
(1) `x^3 - 3x^2 - 6x + 8`
Here `p(x)=x^3 - 3x^2 - 6x + 8`
sum of coefficient of all the terms of `p(x) = 1 - 3 - 6 + 8 = 0`
`:.` `(x-1)` is a factor of `p(x)`.
Now, `p(x) = x^3 - 3x^2 - 6x + 8`
`=x^3 - x^2 - 2x^2 + 2x - 8x + 8`
`=x^2(x - 1) - 2x(x - 1) - 8(x - 1)`
`=(x - 1)(x^2 - 2x - 8)`
`=(x - 1)(x - 4)(x + 2)`

Type-8 Cyclic Expressions Examples...
(1) `a^2(b - c) + b^2(c - a) + c^2(a - b)`
`= a^2b - a^2c + b^2c - b^2a + c^2a - c^2b`
`= a^2b - a^2c + cb^2 - ab^2 + ac^2 - bc^2`
`= a^2b - a^2c - ab^2 + ac^2 + b^2c - bc^2`
`= a^2(b - c) - a(b^2 + c^2) + bc(b - c)`
`= a^2(b - c) - a(b - c)(b + c) + bc(b - c)`
`= (b - c)(a^2 - a(b + c) + bc)`
`= (b - c)(a^2 - ab - ac + bc)`
`= (b - c)(a(a - b) - c(a - b))`
`= (b - c)(a - b)(a - c)`
`= -(a - b)(b - c)(c - a)`



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here


Share with your friends, if solutions are helpful to you.
 
Copyright © 2019. All rights reserved. Terms, Privacy





We use cookies to improve your experience on our site and to show you relevant advertising. By browsing this website, you agree to our use of cookies. Learn more