| 
                             
                            
                                | 
                                    
                                    
                                 | 
                             
                            
                                | 
                    Home > Algebra calculators > Linear Equation in three variables using Inverse matrix method, Gauss-Jordan Elimination method calculator
                                 | 
                             
                            
                                
                                 
                                 | 
                             
                            
                                
    
        
                                
                    
    
        
            | 
                
             | 
         
        
            | 
             | 
         
        
            | 
             | 
         
        
            | 
 
	
    
 
                                    
	
		
			
                    
    
        
    
    
    
    
    
        | 
            
            Solution
         | 
     
    
        
            
            
            
  
  
  
  
                
                 
                Solution provided by AtoZmath.com
              
            
            
         | 
     
    
        | 
            
         | 
     
    
 
 
 
                    
                
		 
			
 
    
        | 
	        Inverse of matrix using Adjoint method calculator
         | 
     
    
        
  1. `[[2,3,1],[0,5,6],[1,1,2]]`
   2. `[[2,1,-1],[1,0,-1],[1,1,2]]`
   3. `[[2,3],[4,10]]`
   4. `[[5,1],[4,2]]`         
         | 
     
    
        
 
 
 Example1. Find Inverse of matrix  `A=[[3,1,1],[-1,2,1],[1,1,1]]`Solution:| `|A|` |  =  |  |  `3`  |  `1`  |  `1`  |  |   |  `-1`  |  `2`  |  `1`  |  |   |  `1`  |  `1`  |  `1`  |  |  
  |  
 `=3 xx (2 × 1 - 1 × 1) -1 xx (-1 × 1 - 1 × 1) +1 xx (-1 × 1 - 2 × 1)` `=3 xx (2 -1) -1 xx (-1 -1) +1 xx (-1 -2)` `=3 xx (1) - -1 xx (-2) +1 xx (-3)` `= 3 +2 -3` `=2` | `Adj(A)` |  =  | | Adj |  | `3` | `1` | `1` |  |   | `-1` | `2` | `1` |  |   | `1` | `1` | `1` |  |  
  |  
  |  
 |  =  |  | `+(2 × 1 - 1 × 1)` | `-(-1 × 1 - 1 × 1)` | `+(-1 × 1 - 2 × 1)` |  |   | `-(1 × 1 - 1 × 1)` | `+(3 × 1 - 1 × 1)` | `-(3 × 1 - 1 × 1)` |  |   | `+(1 × 1 - 1 × 2)` | `-(3 × 1 - 1 × (-1))` | `+(3 × 2 - 1 × (-1))` |  |  
  | T |  
  |  
 |  =  |  | `+(2 -1)` | `-(-1 -1)` | `+(-1 -2)` |  |   | `-(1 -1)` | `+(3 -1)` | `-(3 -1)` |  |   | `+(1 -2)` | `-(3 +1)` | `+(6 +1)` |  |  
  | T |  
  |  
 |  =  |  | `1` | `2` | `-3` |  |   | `0` | `2` | `-2` |  |   | `-1` | `-4` | `7` |  |  
  | T |  
  |  
 |  =  |  | `1` | `0` | `-1` |  |   | `2` | `2` | `-4` |  |   | `-3` | `-2` | `7` |  |  
  |  
 `"Now, "A^(-1)=1/|A| × Adj(A)` |  =  | `1/(2)` × |  | `1` | `0` | `-1` |  |   | `2` | `2` | `-4` |  |   | `-3` | `-2` | `7` |  |  
  |  
 |  =  |  | `1/2` | `0` | `-1/2` |  |   | `1` | `1` | `-2` |  |   | `-3/2` | `-1` | `7/2` |  |  
  |   
  
         | 
     
 
		 
	 
 
        
 | 
         
        
            | 
             | 
         
        
            | 
                
                
                
                
                
                
                
                
                
             | 
         
     
         | 
     
                     
                                 | 
                             
                            
                                
                                     
                                    
 
                                    
                                    
  
                                 | 
                             
                            
                                
                                     
                                    
 
 
 
 
 
Share this solution or page with your friends.
 
                                 | 
                             
                            
                                | 
                                 
                                 | 
                             
                        
                     
                    
                 | 
                
             
             
                
                 |