|
|
|
Click here to Find the value of h,k for which the system of equations has a Unique or Infinite or no solution calculator
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Solving systems of linear equations using Elimination method calculator
|
1. `2x+y+z=5,3x+5y+2z=15,2x+y+4z=8`
2. `2x+5y=16,3x+y=11`
3. `2x+5y=21,x+2y=8`
4. `2x+y=8,x+2y=1`
5. `2x+3y-z=5,3x+2y+z=10,x-5y+3z=0`
6. `x+y+z=3,2x-y-z=3,x-y+z=9`
7. `x+y+z=7,x+2y+2z=13,x+3y+z=13`
8. `2x-y+3z=1,-3x+4y-5z=0,x+3y-6z=0`
|
Example1. Solve Equations 2x+5y=21,x+2y=8 using Elimination methodSolution:Total Equations are `2` `2x+5y=21 -> (1)` `x+2y=8 -> (2)`
Select the equations `(1)` and `(2)`, and eliminate the variable `x`. `2x+5y=21` | ` xx 1->` | | `` | `2x` | `+` | `5y` | `=` | `21` | `` | | | − | | `x+2y=8` | ` xx 2->` | | `` | `2x` | `+` | `4y` | `=` | `16` | `` | | | |
| | | | | | `` | `y` | `=` | `5` | ` -> (3)` |
Now use back substitution method From (3) `y=5` `=>y=5` From (2) `x+2y=8` `=>x+2(5)=8` `=>x+10=8` `=>x=8-10=-2` Solution using Elimination method. `x = -2,y = 5`
|
|
|
|
|
|