|
|
|
Click here to Find the value of h,k for which the system of equations has a Unique or Infinite or no solution calculator
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Solving systems of linear equations using Gauss Jacobi method calculator
|
1. 2x+y+z=5,3x+5y+2z=15,2x+y+4z=8
2. 2x+5y=16,3x+y=11
3. 2x+5y=21,x+2y=8
4. 2x+y=8,x+2y=1
5. 2x+3y-z=5,3x+2y+z=10,x-5y+3z=0
6. x+y+z=3,2x-y-z=3,x-y+z=9
7. x+y+z=7,x+2y+2z=13,x+3y+z=13
8. 2x-y+3z=1,-3x+4y-5z=0,x+3y-6z=0
|
Example1. Solve Equations 2x+5y=21,x+2y=8 using Gauss Jacobi methodSolution:Total Equations are 22x+5y=21x+2y=8From the above equations x_(k+1)=1/2(21-5y_(k))y_(k+1)=1/2(8-x_(k))Initial gauss (x,y) = (0,0)Solution steps are 1^(st) Approximation x_1=1/2[21-5(0)]=1/2[21]=10.5y_1=1/2[8-(0)]=1/2[8]=42^(nd) Approximation x_2=1/2[21-5(4)]=1/2[1]=0.5y_2=1/2[8-(10.5)]=1/2[-2.5]=-1.253^(rd) Approximation x_3=1/2[21-5(-1.25)]=1/2[27.25]=13.625y_3=1/2[8-(0.5)]=1/2[7.5]=3.754^(th) Approximation x_4=1/2[21-5(3.75)]=1/2[2.25]=1.125y_4=1/2[8-(13.625)]=1/2[-5.625]=-2.81255^(th) Approximation x_5=1/2[21-5(-2.8125)]=1/2[35.0625]=17.5312y_5=1/2[8-(1.125)]=1/2[6.875]=3.43756^(th) Approximation x_6=1/2[21-5(3.4375)]=1/2[3.8125]=1.9062y_6=1/2[8-(17.5312)]=1/2[-9.5312]=-4.76567^(th) Approximation x_7=1/2[21-5(-4.7656)]=1/2[44.8281]=22.4141y_7=1/2[8-(1.9062)]=1/2[6.0938]=3.0469Equations are Divergent... Intertions are tabulated as below Iteration | x | y | 1 | 10.5 | 4 | 2 | 0.5 | -1.25 | 3 | 13.625 | 3.75 | 4 | 1.125 | -2.8125 | 5 | 17.5312 | 3.4375 | 6 | 1.9062 | -4.7656 | 7 | 22.4141 | 3.0469 |
|
|
|
|
|
|