|
|
|
Click here to Find the value of h,k for which the system of equations has a Unique or Infinite or no solution calculator
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Solving systems of linear equations using Inverse Matrix method calculator
|
1. `2x+y+z=5,3x+5y+2z=15,2x+y+4z=8`
2. `2x+5y=16,3x+y=11`
3. `2x+5y=21,x+2y=8`
4. `2x+y=8,x+2y=1`
5. `2x+3y-z=5,3x+2y+z=10,x-5y+3z=0`
6. `x+y+z=3,2x-y-z=3,x-y+z=9`
7. `x+y+z=7,x+2y+2z=13,x+3y+z=13`
8. `2x-y+3z=1,-3x+4y-5z=0,x+3y-6z=0`
|
Example1. Solve Equations 2x+5y=21,x+2y=8 using Inverse Matrix methodSolution:Here `2x+5y=21` `x+2y=8` Now converting given equations into matrix form `[[2,5],[1,2]] [[x],[y]]=[[21],[8]]` Now, A = `[[2,5],[1,2]]`, X = `[[x],[y]]` and B = `[[21],[8]]` `:. AX = B` `:. X = A^-1 B` `=2 × 2 - 5 × 1` `=4 -5` `=-1` `"Here, " |A| = -1 != 0` `:. A^(-1) " is possible."` `"Now, "A^(-1)=1/|A| × Adj(A)` `"Here, "X = A^(-1) × B` `:. X = 1/|A| × Adj(A) × B` `:.[[x],[y]]=[[-2],[5]]` `:. x=-2, y=5`
|
|
|
|
|
|