|
|
|
Click here to Find the value of h,k for which the system of equations has a Unique or Infinite or no solution calculator
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Solving systems of linear equations using LU decomposition using Crout's method calculator
|
1. `2x+y+z=5,3x+5y+2z=15,2x+y+4z=8` 2. `2x+5y=16,3x+y=11` 3. `2x+5y=21,x+2y=8` 4. `2x+y=8,x+2y=1` 5. `2x+3y-z=5,3x+2y+z=10,x-5y+3z=0` 6. `x+y+z=3,2x-y-z=3,x-y+z=9` 7. `x+y+z=7,x+2y+2z=13,x+3y+z=13` 8. `2x-y+3z=1,-3x+4y-5z=0,x+3y-6z=0`
|
Example1. Solve Equations 2x+5y=21,x+2y=8 using Crout's methodSolution:Total Equations are `2` `2x+5y=21 -> (1)` `x+2y=8 -> (2)` Now converting given equations into matrix form `[[2,5],[1,2]] [[x],[y]]=[[21],[8]]` Now, A = `[[2,5],[1,2]]`, X = `[[x],[y]]` and B = `[[21],[8]]` Crout's method for LU decomposition Let `A=LU` | = | | `l_(11)` | `0` | | | `l_(21)` | `l_(22)` | |
| `xx` | |
| = | | `l_(11)` | `l_(11)u_(12)` | | | `l_(21)` | `l_(21)u_(12) + l_(22)` | |
|
This implies `l_(11)=2` `l_(11)u_(12)=5=>2xxu_(12)=5=>u_(12)=5/2` `l_(21)=1` `l_(21)u_(12) + l_(22)=2=>1xx5/2 + l_(22)=2=>l_(22)=-1/2` `:.A=L xx U=LU`
Now, `Ax=B`, and `A=LU => LUx=B` let `Ux=y`, then `Ly=B =>` | | | `` | `2y_1` | | | `=` | `21` | `` | | | | `` | `y_1` | `-` | `1/2y_2` | `=` | `8` | `` |
Now use forward substitution method From (1) `2y_1=21` `=>2y_1=21` `=>y_1=(21)/(2)=21/2` From (2) `y_1-1/2y_2=8` `=>(21/2)-(y_2)/(2)=8` `=>21/2-(y_2)/(2)=8` `=>-(y_2)/(2)=8-21/2` `=>-(y_2)/(2)=-5/2` `=>y_2=-5/2xx-2=5` Now, `Ux=y` | | | `` | `x` | `+` | `5/2y` | `=` | `21/2` | `` | | | | | | `` | `y` | `=` | `5` | `` |
Now use back substitution method From (2) `y=5` From (1) `x+5/2y=21/2` `=>x+(5(5))/(2)=21/2` `=>x+25/2=21/2` `=>x=21/2-25/2` `=>x=-2` Solution by Crout's method is `x=-2 and y=5`
|
|
|
|
|
|