Home > Matrix & Vector calculators > Solving systems of linear equations using LU decomposition using Doolittle's method calculator

Method and examples
Method
Solving systems of linear equations using
LU decomposition using Doolittle's method
Enter Equations line by line like
2x+5y=16
3x+y=11
Or 2, 5, 16
3, 1, 11
Mode =
Decimal Place =
Click here to Find the value of h,k for which the system of equations has a Unique or Infinite or no solution calculator
SolutionHelp
Solving systems of linear equations using LU decomposition using Doolittle's method calculator
1. 2x+y+z=5,3x+5y+2z=15,2x+y+4z=8
2. 2x+5y=16,3x+y=11
3. 2x+5y=21,x+2y=8
4. 2x+y=8,x+2y=1
5. 2x+3y-z=5,3x+2y+z=10,x-5y+3z=0
6. x+y+z=3,2x-y-z=3,x-y+z=9
7. x+y+z=7,x+2y+2z=13,x+3y+z=13
8. 2x-y+3z=1,-3x+4y-5z=0,x+3y-6z=0


Example
1. Solve Equations 2x+5y=21,x+2y=8 using Doolittle's method

Solution:
Total Equations are 2

2x+5y=21 -> (1)

x+2y=8 -> (2)

Now converting given equations into matrix form
[[2,5],[1,2]] [[x],[y]]=[[21],[8]]

Now, A = [[2,5],[1,2]], X = [[x],[y]] and B = [[21],[8]]

Doolittle's method for LU decomposition
Let A=LU

25
12
 = 
10
l_(21)1
 xx 
u_(11)u_(12)
0u_(22)


25
12
 = 
u_(11)u_(12)
l_(21)u_(11)l_(21)u_(12) + u_(22)


This implies
u_(11)=2

u_(12)=5



l_(21)u_(11)=1=>l_(21)xx2=1=>l_(21)=1/2

l_(21)u_(12) + u_(22)=2=>1/2xx5 + u_(22)=2=>u_(22)=-1/2



:.A=L xx U=LU

25
12
 = 
10
1/21
 xx 
25
0-1/2
 = 
25
12




Now, Ax=B, and A=LU => LUx=B

let Ux=y, then Ly=B =>

10
1/21
 xx 
y_1
y_2
 = 
21
8


y_1=21
1/2y_1+y_2=8


Now use forward substitution method
From (1)
y_1=21

From (2)
1/2y_1+y_2=8

=>((21))/(2)+y_2=8

=>21/2+y_2=8

=>y_2=8-21/2

=>y_2=-5/2

Now, Ux=y

25
0-1/2
 xx 
x
y
 = 
21
-5/2


2x+5y=21
-1/2y=-5/2


Now use back substitution method
From (2)
-1/2y=-5/2

=>y=-5/2xx-2=5

From (1)
2x+5y=21

=>2x+5(5)=21

=>2x+25=21

=>2x=21-25

=>2x=-4

=>x=(-4)/(2)=-2

Solution by Doolittle's method is
x=-2 and y=5




Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.