Home > Numerical methods calculators > Numerical Differentiation using Stirling's formula calculator

Method and examples
Numerical differentiation using Stirling's formula
Find 
Method
 
Type your data in either horizontal or verical format,

OR
Rows :
xf(x)
x =
Decimal Place =
Click here for Numerical Interpolation using Stirling's formula Calculator
SolutionHelp
Numerical differentiation using Stirling's formula calculator
1. From the following table of values of x and y, obtain (dy)/(dx) and (d^2y)/(dx^2) for x = 7.5
x7.477.487.497.507.517.527.53
f0.1930.1950.1980.2010.2030.2060.208

2. From the following table of values of x and y, obtain (dy)/(dx) and (d^2y)/(dx^2) for x = 900
x0300600900120015001800
f135149157183201205193


Example
1. Using Stirling's formula to find solution
xf(x)
7.470.193
7.480.195
7.490.198
7.500.201
7.510.203
7.520.206
7.530.208

x = 7.5


Solution:
Stirling's formula (central difference formula).
The value of table for x and y

x7.477.487.497.57.517.527.53
y0.1930.1950.1980.2010.2030.2060.208

Difference table is
xyDeltayDelta^2yDelta^3yDelta^4yDelta^5yDelta^6y
7.470.193
0.002
7.480.1950.001
0.003-0.001
7.490.19800
0.003-0.0010.003
7.50.201-0.0010.003-0.01
0.0020.002-0.007
7.510.2030.001-0.004
0.003-0.002
7.520.206-0.001
0.002
7.530.208


The value of x at you want to find f(x) : x_0 = 7.5

h = x_1 - x_0 = 7.48 - 7.47 = 0.01


Stirling's Formula is
[(dy)/(dx)]_(x=x_0) = 1/h * [1/2 * (Delta y_0 + Delta y_(-1)) - 1/12 * (Delta^3 y_(-1) + Delta^3 y_(-2)) + 1/60 * (Delta^5 y_(-2) + Delta^5 y_(-3)) + ...]

:.[(dy)/(dx)]_(x=7.5) = 1/0.01 * [1/2 * (0.002 +0.003) - 1/12 * (0.002 -0.001)+ 1/60 * (-0.007 +0.003)]

:.[(dy)/(dx)]_(x=7.5) = 1/0.01 * [0.0025-0.0000833333-0.0000666667]

:.[(dy)/(dx)]_(x=7.5) = 0.235


[(d^2y)/(dx^2)]_(x=x_0) = 1/h^2 * [Delta^2 y_(-1) - 1/12 Delta^4 y_(-2) + 1/90 * Delta^6 y_(-3) + ...]

:.[(d^2y)/(dx^2)]_(x=7.5) = 1/0.0001 * [-0.001 - 1/12 * 0.003+ 1/90 * -0.01]

:.[(d^2y)/(dx^2)]_(x=7.5) = 1/0.0001 * [-0.001-0.00025-0.0001111111]

:.[(d^2y)/(dx^2)]_(x=7.5) = -13.61111




Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.