|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Solve numerical differential equation using Taylor Series method (1st order derivative) calculator
|
1. Find y(0.5) for `y'=-2x-y`, y(0) = -1, with step length 0.1
2. Find y(2) for `y'=(x-y)/2`, y(0) = 1, with step length 0.2
3. Find y(0.3) for `y'=-(x*y^2+y)`, y(0) = 1, with step length 0.1
4. Find y(0.2) for `y'=-y`, y(0) = 1, with step length 0.1
|
Example1. Find y(0.2) for `y'=x^2y-1`, y(0) = 1, with step length 0.1 using Taylor Series method
Solution: Given `y'=x^2y-1, y(0)=1, h=0.1, y(0.2)=?`
Here, `x_0=0,y_0=1,h=0.1`
Differentiating successively, we get `y'=x^2y-1`
`y''=2xy+x^2y'`
`y'''=2y+4xy'+x^2y''`
`y''''=6y'+6xy''+x^2y'''`
Now substituting, we get `y_0'=x_0^2y_0-1=-1`
`y_0''=2x_0y_0+x_0^2y_0'=0`
`y_0'''=2y_0+4x_0y_0'+x_0^2y_0''=2`
`y_0''''=6y_0'+6x_0y_0''+x_0^2y_0'''=-6`
Putting these values in Taylor's Series, we have `y_1 = y_0 + hy_0' + h^2/(2!) y_0'' + h^3/(3!) y_0''' + h^4/(4!) y_0'''' + ...`
`=1+0.1*(-1)+(0.1)^2/(2!)*(0)+(0.1)^3/(3!)*(2)+(0.1)^4/(4!)*(-6)+...`
`=1-0.1+0+0.00033+0+...`
`=0.90031`
`:.y(0.1)=0.90031`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
Now substituting, we get `y_1'=x_1^2y_1-1=-0.991`
`y_1''=2x_1y_1+x_1^2y_1'=0.17015`
`y_1'''=2y_1+4x_1y_1'+x_1^2y_1''=1.40592`
`y_1''''=6y_1'+6x_1y_1''+x_1^2y_1'''=-5.82983`
Putting these values in Taylor's Series, we have `y_2 = y_1 + hy_1' + h^2/(2!) y_1'' + h^3/(3!) y_1''' + h^4/(4!) y_1'''' + ...`
`=0.90031+0.1*(-0.991)+(0.1)^2/(2!)*(0.17015)+(0.1)^3/(3!)*(1.40592)+(0.1)^4/(4!)*(-5.82983)+...`
`=0.90031-0.0991+0.00085+0.00023+0+...`
`=0.80227`
`:.y(0.2)=0.80227`
|
Input functions
|
Sr No. |
Function |
Input value |
1. |
`x^3` |
x^3 |
2. |
`sqrt(x)` |
sqrt(x) |
3. |
`root(3)(x)`
|
root(3,x)
|
4. |
sin(x) |
sin(x) |
5. |
cos(x) |
cos(x) |
6. |
tan(x) |
tan(x) |
7. |
sec(x) |
sec(x) |
8. |
cosec(x) |
csc(x) |
9. |
cot(x) |
cot(x) |
10. |
`sin^(-1)(x)` |
asin(x) |
11. |
`cos^(-1)(x)` |
acos(x) |
12. |
`tan^(-1)(x)` |
atan(x) |
13. |
`sin^2(x)` |
sin^2(x) |
14. |
`log_y(x)` |
log(y,x) |
15. |
`log_10(x)` |
log(x) |
16. |
`log_e(x)` |
ln(x) |
17. |
`e^x` |
exp(x) or e^x |
18. |
`e^(2x)` |
exp(2x) or e^(2x) |
19. |
`oo` |
inf |
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|