|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
|
|
Solve numerical differential equation using Runge-Kutta 3 method (2nd order derivative) calculator
|
1. Find y(1) for `y''=-4z-4y`, `x_0=0, y_0=0, z_0=1`, with step length 0.1
2. Find y(0.1) for `y''=1+2xy-x^2z`, `x_0=0, y_0=1, z_0=0`, with step length 0.1
3. Find y(0.2) for `y''=xz^2-y^2`, `x_0=0, y_0=1, z_0=0`, with step length 0.2
|
Example1. Find y(0.1) for `y''=1+2xy-x^2z`, `x_0=0, y_0=1, z_0=0`, with step length 0.1 using Runge-Kutta 3 method (2nd order derivative) Solution:Given `y^('')=1+2xy-x^2z, y(0)=1, y'(0)=0, h=0.1, y(0.1)=?` put `(dy)/(dx)=z` and differentiate w.r.t. x, we obtain `(d^2y)/(dx^2)=(dz)/(dx)` We have system of equations `(dy)/(dx)=z=f(x,y,z)` `(dz)/(dx)=1+2xy-x^2z=g(x,y,z)` Third order R-K method `k_1=hf(x_0,y_0,z_0)=(0.1)*f(0,1,0)=(0.1)*(0)=0` `l_1=hg(x_0,y_0,z_0)=(0.1)*g(0,1,0)=(0.1)*(1)=0.1` `k_2=hf(x_0+h/2,y_0+k_1/2,z_0+l_1/2)=(0.1)*f(0.05,1,0.05)=(0.1)*(0.05)=0.005` `l_2=hg(x_0+h/2,y_0+k_1/2,z_0+l_1/2)=(0.1)*g(0.05,1,0.05)=(0.1)*(1.0999)=0.11` `k_3=hf(x_0+h,y_0+2k_2-k_1,z_0+2l_2-l_1)=(0.1)*f(0.1,1.01,0.12)=(0.1)*(0.12)=0.012` `l_3=hg(x_0+h,y_0+2k_2-k_1,z_0+2l_2-l_1)=(0.1)*g(0.1,1.01,0.12)=(0.1)*(1.2008)=0.1201` Now, `y_1=y_0+1/6(k_1+4k_2+k_3)` `y_1=1+1/6[0+4(0.005)+(0.012)]` `y_1=1.0053` `:.y(0.1)=1.0053`
`:.y(0.1)=1.0053` | `n` | `x_n` | `y_n` | `z_n` | `k_1` | `l_1` | `k_2` | `l_2` | `k_3` | `l_3` | `x_(n+1)` | `y_(n+1)` | `z_(n+1)` | | 0 | 0 | 1 | 0 | 0 | 0.1 | 0.005 | 0.11 | 0.012 | 0.1201 | 0.1 | 1.0053 | |
|
|
Input functions
|
| Sr No. |
Function |
Input value |
| 1. |
`x^3` |
x^3 |
| 2. |
`sqrt(x)` |
sqrt(x) |
| 3. |
`root(3)(x)`
|
root(3,x)
|
| 4. |
sin(x) |
sin(x) |
| 5. |
cos(x) |
cos(x) |
| 6. |
tan(x) |
tan(x) |
| 7. |
sec(x) |
sec(x) |
| 8. |
cosec(x) |
csc(x) |
| 9. |
cot(x) |
cot(x) |
| 10. |
`sin^(-1)(x)` |
asin(x) |
| 11. |
`cos^(-1)(x)` |
acos(x) |
| 12. |
`tan^(-1)(x)` |
atan(x) |
| 13. |
`sin^2(x)` |
sin^2(x) |
| 14. |
`log_y(x)` |
log(y,x) |
| 15. |
`log_10(x)` |
log(x) |
| 16. |
`log_e(x)` |
ln(x) |
| 17. |
`e^x` |
exp(x) or e^x |
| 18. |
`e^(2x)` |
exp(2x) or e^(2x) |
| 19. |
`oo` |
inf |
|
|
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|
|