|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Solve numerical differential equation using Runge-Kutta 3 method (2nd order derivative) calculator
|
1. Find y(1) for `y''=-4z-4y`, `x_0=0, y_0=0, z_0=1`, with step length 0.1
2. Find y(0.1) for `y''=1+2xy-x^2z`, `x_0=0, y_0=1, z_0=0`, with step length 0.1
3. Find y(0.2) for `y''=xz^2-y^2`, `x_0=0, y_0=1, z_0=0`, with step length 0.2
|
Example1. Find y(0.1) for `y''=1+2xy-x^2z`, `x_0=0, y_0=1, z_0=0`, with step length 0.1 using Runge-Kutta 3 method (2nd order derivative)
Solution: Given `y^('')=1+2xy-x^2z, y(0)=1, y'(0)=0, h=0.1, y(0.1)=?`
put `(dy)/(dx)=z` and differentiate w.r.t. x, we obtain `(d^2y)/(dx^2)=(dz)/(dx)`
We have system of equations `(dy)/(dx)=z=f(x,y,z)`
`(dz)/(dx)=1+2xy-x^2z=g(x,y,z)`
Third order R-K method `k_1=hf(x_0,y_0,z_0)=(0.1)*f(0,1,0)=(0.1)*(0)=0`
`l_1=hg(x_0,y_0,z_0)=(0.1)*g(0,1,0)=(0.1)*(1)=0.1`
`k_2=hf(x_0+h/2,y_0+k_1/2,z_0+l_1/2)=(0.1)*f(0.05,1,0.05)=(0.1)*(0.05)=0.005`
`l_2=hg(x_0+h/2,y_0+k_1/2,z_0+l_1/2)=(0.1)*g(0.05,1,0.05)=(0.1)*(1.09988)=0.10999`
`k_3=hf(x_0+h,y_0+2k_2-k_1,z_0+2l_2-l_1)=(0.1)*f(0.1,1.01,0.11998)=(0.1)*(0.11998)=0.012`
`l_3=hg(x_0+h,y_0+2k_2-k_1,z_0+2l_2-l_1)=(0.1)*g(0.1,1.01,0.11998)=(0.1)*(1.2008)=0.12008`
Now, `y_1=y_0+1/6(k_1+4k_2+k_3)`
`y_1=1+1/6[0+4(0.005)+(0.012)]`
`y_1=1.00533`
`:.y(0.1)=1.00533`
`:.y(0.1)=1.00533`
|
Input functions
|
Sr No. |
Function |
Input value |
1. |
`x^3` |
x^3 |
2. |
`sqrt(x)` |
sqrt(x) |
3. |
`root(3)(x)`
|
root(3,x)
|
4. |
sin(x) |
sin(x) |
5. |
cos(x) |
cos(x) |
6. |
tan(x) |
tan(x) |
7. |
sec(x) |
sec(x) |
8. |
cosec(x) |
csc(x) |
9. |
cot(x) |
cot(x) |
10. |
`sin^(-1)(x)` |
asin(x) |
11. |
`cos^(-1)(x)` |
acos(x) |
12. |
`tan^(-1)(x)` |
atan(x) |
13. |
`sin^2(x)` |
sin^2(x) |
14. |
`log_y(x)` |
log(y,x) |
15. |
`log_10(x)` |
log(x) |
16. |
`log_e(x)` |
ln(x) |
17. |
`e^x` |
exp(x) or e^x |
18. |
`e^(2x)` |
exp(2x) or e^(2x) |
19. |
`oo` |
inf |
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|