|
|
|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Solve numerical differential equation using Runge-Kutta 4 method (1st order derivative) calculator
|
1. Find y(1) for y′′=-4z-4y, x0=0,y0=0,z0=1, with step length 0.1
2. Find y(0.1) for y′′=1+2xy-x2z, x0=0,y0=1,z0=0, with step length 0.1
3. Find y(0.2) for y′′=xz2-y2, x0=0,y0=1,z0=0, with step length 0.2
|
Example1. Find y(0.1) for y′′=1+2xy-x2z, x0=0,y0=1,z0=0, with step length 0.1 using Runge-Kutta 4 method (2nd order derivative)
Solution: Given y′′=1+2xy-x2z,y(0)=1,y′(0)=0,h=0.1,y(0.1)=?
put dydx=z and differentiate w.r.t. x, we obtain d2ydx2=dzdx
We have system of equations dydx=z=f(x,y,z)
dzdx=1+2xy-x2z=g(x,y,z)
Forth order R-K method for second order differential equation k1=hf(x0,y0,z0)=(0.1)⋅f(0,1,0)=(0.1)⋅(0)=0
l1=hg(x0,y0,z0)=(0.1)⋅g(0,1,0)=(0.1)⋅(1)=0.1
k2=hf(x0+h2,y0+k12,z0+l12)=(0.1)⋅f(0.05,1,0.05)=(0.1)⋅(0.05)=0.005
l2=hg(x0+h2,y0+k12,z0+l12)=(0.1)⋅g(0.05,1,0.05)=(0.1)⋅(1.09988)=0.10999
k3=hf(x0+h2,y0+k22,z0+l22)=(0.1)⋅f(0.05,1.0025,0.05499)=(0.1)⋅(0.05499)=0.0055
l3=hg(x0+h2,y0+k22,z0+l22)=(0.1)⋅g(0.05,1.0025,0.05499)=(0.1)⋅(1.10011)=0.11001
k4=hf(x0+h,y0+k3,z0+l3)=(0.1)⋅f(0.1,1.0055,0.11001)=(0.1)⋅(0.11001)=0.011
l4=hg(x0+h,y0+k3,z0+l3)=(0.1)⋅g(0.1,1.0055,0.11001)=(0.1)⋅(1.2)=0.12
Now, y1=y0+16(k1+2k2+2k3+k4)
y1=1+16[0+2(0.005)+2(0.0055)+(0.011)]
y1=1.00533
∴y(0.1)=1.00533
∴y(0.1)=1.00533
|
Input functions
|
Sr No. |
Function |
Input value |
1. |
x3 |
x^3 |
2. |
√x |
sqrt(x) |
3. |
3√x
|
root(3,x)
|
4. |
sin(x) |
sin(x) |
5. |
cos(x) |
cos(x) |
6. |
tan(x) |
tan(x) |
7. |
sec(x) |
sec(x) |
8. |
cosec(x) |
csc(x) |
9. |
cot(x) |
cot(x) |
10. |
sin-1(x) |
asin(x) |
11. |
cos-1(x) |
acos(x) |
12. |
tan-1(x) |
atan(x) |
13. |
sin2(x) |
sin^2(x) |
14. |
logy(x) |
log(y,x) |
15. |
log10(x) |
log(x) |
16. |
loge(x) |
ln(x) |
17. |
ex |
exp(x) or e^x |
18. |
e2x |
exp(2x) or e^(2x) |
19. |
∞ |
inf |
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|