|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Weighted Moving Average forecast calculator
|
1. Calculate 3 year Weighted Moving Average forecast calculator
with weight=1,2,1
year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Sales | 5.2 | 4.9 | 5.5 | 4.9 | 5.2 | 5.7 | 5.4 | 5.8 | 5.9 | 6 | 5.2 | 4.8 |
2. Calculate 5 year Weighted Moving Average forecast calculator
with weight=1,2,1,2,1
year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Sales | 5.2 | 4.9 | 5.5 | 4.9 | 5.2 | 5.7 | 5.4 | 5.8 | 5.9 | 6 | 5.2 | 4.8 |
3. Calculate 4 year Weighted Moving Average forecast calculator
with weight=1,2,2,1
year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Sales | 20 | 21 | 23 | 22 | 25 | 24 | 27 | 26 | 28 | 30 |
|
Example1) 3 year Weighted Moving Average forecast year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Sales | 5.2 | 4.9 | 5.5 | 4.9 | 5.2 | 5.7 | 5.4 | 5.8 | 5.9 | 6 | 5.2 | 4.8 | Calculate 3 year Weighted Moving Average forecast with weight=1,2,1Solution:The value of table for `x` and `y` x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|
y | 5.2 | 4.9 | 5.5 | 4.9 | 5.2 | 5.7 | 5.4 | 5.8 | 5.9 | 6 | 5.2 | 4.8 |
---|
The weights of the 3 years are respectively 1,2,1 and their sum is 4 Calculation of 3 year moving averages of the data (1) year | (2) Sales | (3) 3 year weighted moving total | (4) 3 year weighted moving average `(3)-:4` | 1 | 5.2 | | | 2 | 4.9 | `1xx5.2+2xx4.9+1xx5.5=20.5` | `20.5-:4=5.125` | 3 | 5.5 | `1xx4.9+2xx5.5+1xx4.9=20.8` | `20.8-:4=5.2` | 4 | 4.9 | `1xx5.5+2xx4.9+1xx5.2=20.5` | `20.5-:4=5.125` | 5 | 5.2 | `1xx4.9+2xx5.2+1xx5.7=21` | `21-:4=5.25` | 6 | 5.7 | `1xx5.2+2xx5.7+1xx5.4=22` | `22-:4=5.5` | 7 | 5.4 | `1xx5.7+2xx5.4+1xx5.8=22.3` | `22.3-:4=5.575` | 8 | 5.8 | `1xx5.4+2xx5.8+1xx5.9=22.9` | `22.9-:4=5.725` | 9 | 5.9 | `1xx5.8+2xx5.9+1xx6=23.6` | `23.6-:4=5.9` | 10 | 6 | `1xx5.9+2xx6+1xx5.2=23.1` | `23.1-:4=5.775` | 11 | 5.2 | `1xx6+2xx5.2+1xx4.8=21.2` | `21.2-:4=5.3` | 12 | 4.8 | | |
(1) year | (2) Sales | (3) 3 year weighted moving average | (4) Error | (5) |Error| | (6) `"Error"^2` | (7) `|%"Error"|` | 1 | 5.2 | | | | | | 2 | 4.9 | | | | | | 3 | 5.5 | | | | | | 4 | 4.9 | 5.125 | `4.9-5.125=-0.225` | `0.225` | `0.0506` | `4.59%` | 5 | 5.2 | 5.2 | `5.2-5.2=0` | `0` | `0` | `0%` | 6 | 5.7 | 5.125 | `5.7-5.125=0.575` | `0.575` | `0.3306` | `10.09%` | 7 | 5.4 | 5.25 | `5.4-5.25=0.15` | `0.15` | `0.0225` | `2.78%` | 8 | 5.8 | 5.5 | `5.8-5.5=0.3` | `0.3` | `0.09` | `5.17%` | 9 | 5.9 | 5.575 | `5.9-5.575=0.325` | `0.325` | `0.1056` | `5.51%` | 10 | 6 | 5.725 | `6-5.725=0.275` | `0.275` | `0.0756` | `4.58%` | 11 | 5.2 | 5.9 | `5.2-5.9=-0.7` | `0.7` | `0.49` | `13.46%` | 12 | 4.8 | 5.775 | `4.8-5.775=-0.975` | `0.975` | `0.9506` | `20.31%` | 13 | | 5.3 | Total | `3.525` | `2.1156` | `66.5%` | Forecasting errors1. Mean absolute error (MAE), also called mean absolute deviation (MAD)MAE`=1/n sum |e_i|=3.525/9=0.3917` 2. Mean squared error (MSE)MSE`=1/n sum |e_i^2|=2.1156/9=0.2351` 3. Root mean squared error (RMSE)RMSE`=sqrt(MSE)=sqrt(0.2351)=0.4848` 4. Mean absolute percentage error (MAPE)MAPE`=1/n sum |e_i/y_i|=66.5/9=7.39`
|
|
|
|
|
|