|
|
Home > Geometry calculators > Coordinate Geometry > Find the value of x, If distance between the points (5,3) and (x,-1) is 5 calculator
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Find the value of x, if the distance between the points (x,-1) and (3,2) is 5 calculator
|
1. If distance between the points `A(5,3), B(x,-1)` is `5`, then find the value of `x`
2. If distance between the points `A(x,-1), B(3,2)` is `5`, then find the value of `x`
3. If distance between the points `A(x,2), B(3,-6)` is `10`, then find the value of `x`
4. If distance between the points `A(x,1), B(-1,5)` is `5`, then find the value of `x`
5. If distance between the points `A(x,7), B(1,15)` is `10`, then find the value of `x`
6. If distance between the points `A(1,x), B(-3,5)` is `5`, then find the value of `x`
7. If distance between the points `A(x,0), B(4,8)` is `10`, then find the value of `x`
|
Example1. If distance between the points `A(5,3), B(x,-1)` is `5`, then find the value of `x`Solution:Points are `A(5,3),B(x,-1)` and distance`=5` `:. x_1=5,y_1=3,x_2=x,y_2=-1` and `AB=5` `AB=sqrt((x_2-x_1)^2+(y_2-y_1)^2)` `=>5=sqrt((x-5)^2+(-1-3)^2)` `=>25=x^2-10x+25+(16)` `=>25=x^2-10x+41` `=>x^2-10x+16 = 0` `=>x^2-2x-8x+16 = 0` `=>x(x-2)-8(x-2) = 0` `=>(x-2)(x-8) = 0` `=>(x-2) = 0" or "(x-8) = 0` `=>x = 2" or "x = 8` Hence value of x are 2 and 8
2. If distance between the points `A(x,-1), B(3,2)` is `5`, then find the value of `x`Solution:Points are `A(x,-1),B(3,2)` and distance`=5` `:. x_1=x,y_1=-1,x_2=3,y_2=2` and `AB=5` `AB=sqrt((x_2-x_1)^2+(y_2-y_1)^2)` `=>5=sqrt((3-x)^2+(2--1)^2)` `=>25=9-6x+x^2+(9)` `=>25=x^2-6x+18` `=>x^2-6x-7 = 0` `=>x^2+x-7x-7 = 0` `=>x(x+1)-7(x+1) = 0` `=>(x+1)(x-7) = 0` `=>(x+1) = 0" or "(x-7) = 0` `=>x = -1" or "x = 7` Hence value of x are -1 and 7
3. If distance between the points `A(x,2), B(3,-6)` is `10`, then find the value of `x`Solution:Points are `A(x,2),B(3,-6)` and distance`=10` `:. x_1=x,y_1=2,x_2=3,y_2=-6` and `AB=10` `AB=sqrt((x_2-x_1)^2+(y_2-y_1)^2)` `=>10=sqrt((3-x)^2+(-6-2)^2)` `=>100=9-6x+x^2+(64)` `=>100=x^2-6x+73` `=>x^2-6x-27 = 0` `=>x^2+3x-9x-27 = 0` `=>x(x+3)-9(x+3) = 0` `=>(x+3)(x-9) = 0` `=>(x+3) = 0" or "(x-9) = 0` `=>x = -3" or "x = 9` Hence value of x are -3 and 9
4. If distance between the points `A(x,1), B(-1,5)` is `5`, then find the value of `x`Solution:Points are `A(x,1),B(-1,5)` and distance`=5` `:. x_1=x,y_1=1,x_2=-1,y_2=5` and `AB=5` `AB=sqrt((x_2-x_1)^2+(y_2-y_1)^2)` `=>5=sqrt((-1-x)^2+(5-1)^2)` `=>25=1--2x+x^2+(16)` `=>25=x^2--2x+17` `=>x^2-2x-8 = 0` `=>x^2+2x-4x-8 = 0` `=>x(x+2)-4(x+2) = 0` `=>(x+2)(x-4) = 0` `=>(x+2) = 0" or "(x-4) = 0` `=>x = -2" or "x = 4` Hence value of x are -2 and 4
5. If distance between the points `A(x,7), B(1,15)` is `10`, then find the value of `x`Solution:Points are `A(x,7),B(1,15)` and distance`=10` `:. x_1=x,y_1=7,x_2=1,y_2=15` and `AB=10` `AB=sqrt((x_2-x_1)^2+(y_2-y_1)^2)` `=>10=sqrt((1-x)^2+(15-7)^2)` `=>100=1-2x+x^2+(64)` `=>100=x^2-2x+65` `=>x^2-2x-35 = 0` `=>x^2+5x-7x-35 = 0` `=>x(x+5)-7(x+5) = 0` `=>(x+5)(x-7) = 0` `=>(x+5) = 0" or "(x-7) = 0` `=>x = -5" or "x = 7` Hence value of x are -5 and 7
6. If distance between the points `A(1,x), B(-3,5)` is `5`, then find the value of `x`Solution:Points are `A(1,x),B(-3,5)` and distance`=5` `:. x_1=1,y_1=x,x_2=-3,y_1=5` and `AB=5` `AB=sqrt((x_2-x_1)^2+(y_2 - y_1)^2)` `=>5=sqrt((-3 - 1)^2+(x-5)^2)` `=>25=16+x^2-10x+25` `=>25=x^2-10x+41` `=>x^2-10x+16 = 0` `=>x^2-2x-8x+16 = 0` `=>x(x-2)-8(x-2) = 0` `=>(x-2)(x-8) = 0` `=>(x-2) = 0" or "(x-8) = 0` `=>x = 2" or "x = 8` Hence value of x are 2 and 8
7. If distance between the points `A(x,0), B(4,8)` is `10`, then find the value of `x`Solution:Points are `A(x,0),B(4,8)` and distance`=10` `:. x_1=x,y_1=0,x_2=4,y_2=8` and `AB=10` `AB=sqrt((x_2-x_1)^2+(y_2-y_1)^2)` `=>10=sqrt((4-x)^2+(8-0)^2)` `=>100=16-8x+x^2+(64)` `=>100=x^2-8x+80` `=>x^2-8x-20 = 0` `=>x^2+2x-10x-20 = 0` `=>x(x+2)-10(x+2) = 0` `=>(x+2)(x-10) = 0` `=>(x+2) = 0" or "(x-10) = 0` `=>x = -2" or "x = 10` Hence value of x are -2 and 10
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|