Home > Pre-Algebra calculators > Tables > Area formula

1. Circle
Area `(A) = pi r^2`
Circumference `(C) = 2 pi r = pi d`
Diameter `(d) = 2 r`
2. Semi-Circle
Area `(A) = 1/2 pi r^2`
Circumference `(C) = pi r = (pi d)/2`
Perimeter `(P) = pi r + 2 r`
Diameter `(d) = 2 r`
 
3. Regular Hexagon
Perimeter `(P) = 6 a`
Area `(A) = sqrt(3)/4 xx 6 xx a^2`
4. Square
Diagonal `(d) = sqrt(2) a`
Perimeter `(P) = 4a`
Area `(A) = a^2 = d^2/2`
 
5. Rectangle
Diagonal `(d) = sqrt(l^2 + b^2)`
Perimeter `(P) = 2(l+b)`
Area `(A) = l b`
6. Parallelogram
Area `(A) = ah`
Perimeter `(P) = 2a + 2b`
 
7. Rhombus
Radius `(r_1) = (d_1)/2`
Radius `(r_2) = (d_2)/2`
Side `(a) = sqrt(r_1^2 + r_2^2)`
Perimeter `(P) = 4 a`
Area `(SA) = (d_1 d_2)/2`
8. Trapezium
Area `(A) = h/2 (a + b)`
Perimeter `(P) = a + b + c + d`
 
9. Scalene Triangle
Perimeter `(P) = a+b+c`
`S = P/2 = (a+b+c)/2`
Area `(A) = sqrt(S (S - a) (S - b) (S - c))`
10. Right angle Triangle
Diagonal `(d) = sqrt(a^2 + b^2)`
Perimeter `(P) = a+b+c`
Area `(A) = 1/2(a b)`
 
11. Equilateral Triangle
Perimeter `(P) = 3 a`
Area `(A) = sqrt(3)/4 a^2`
12. Isoceles Triangle
Height `(h) = sqrt(a^2 - b^2/4)`
Perimeter `(P) = 2 a + b`
Area `(A) = (b h)/2`
 
13. Sector Segment
Length of the arc `= l = (pi r theta)/180`
Area of a minor sector `= (pi r^2 theta)/360`


I know that for a sector & segment Radius = 10 and angle of measure = 180 . From this find out length of arc of the sector & segment.

`"Here "r = 10" and " theta = 180" (Given)"`

`"Length of the arc " = l = (pi r theta)/180`

`=(22/7 * 10 * 180)/180`

`=31.4286`


`"Area of a minor sector "= (pi r^2 theta)/360`

`=(22/7 * 10^2 * 180)/360`

`=157.1429`




Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.