|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
is Skew Symmetric Matrix calculator
|
1. `[[0,2,3],[-2,0,6],[-3,-6,0]]` 2. `[[1,2,3],[-2,0,6],[-3,-6,0]]`
|
Example1. is Skew Symmetric Matrix ? `[[0,2,3],[-2,0,6],[-3,-6,0]]`Solution:A square matrix `A=[a_(ij)]` is said to be a skew symmetric if `A = -A^T` i.e. `a_(ij) = -a_(ji)` for all i,j.
Note : In a skew symmetric matrix, all the diagonal elements are always zero. `A` | = | | `0` | `2` | `3` | | | `-2` | `0` | `6` | | | `-3` | `-6` | `0` | |
|
`A^T` | = | | `0` | `2` | `3` | | | `-2` | `0` | `6` | | | `-3` | `-6` | `0` | |
| T |
| = | | `0` | `-2` | `-3` | | | `2` | `0` | `-6` | | | `3` | `6` | `0` | |
|
`(-1) × (A^T)` | = | `-1` | × | | `0` | `-2` | `-3` | | | `2` | `0` | `-6` | | | `3` | `6` | `0` | |
| = | | `0` | `2` | `3` | | | `-2` | `0` | `6` | | | `-3` | `-6` | `0` | |
|
Here, `A` and `-A^T` are equal, so `A` is a skew symmetric matrix
|
|
|
|
|