|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Matrix Characteristic polynomial calculator
|
1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]` 2. `[[6,-2,2],[-2,3,-1],[2,-1,3]]` 3. `[[3,2,4],[2,0,2],[4,2,3]]` 4. `[[1,1,1],[-1,-3,-3],[2,4,4]]` 5. `[[2,3],[4,10]]` 6. `[[5,1],[4,2]]`
|
Example1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]` Find characteristic polynomial ...
`|A-lamdaI|`
`=|[(8-lamda),-6,2],[-6,(7-lamda),-4],[2,-4,(3-lamda)]|`
`=(8-lamda)((7-lamda) × (3-lamda) - (-4) × (-4))-(-6)((-6) × (3-lamda) - (-4) × 2)+2((-6) × (-4) - (7-lamda) × 2)`
`=(8-lamda)((21-10lamda+lamda^2)-16)+6((-18+6lamda)-(-8))+2(24-(14-2lamda))`
`=(8-lamda)(5-10lamda+lamda^2)+6(-10+6lamda)+2(10+2lamda)`
`= (40-85lamda+18lamda^2-lamda^3)+(-60+36lamda)+(20+4lamda)`
`=(-lamda^3+18lamda^2-45lamda)`
`=-lamda(lamda-3)(lamda-15)`
|
|
|
|
|