|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
determinants using Sarrus Rule calculator
|
1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]` 2. `[[6,-2,2],[-2,3,-1],[2,-1,3]]` 3. `[[3,2,4],[2,0,2],[4,2,3]]` 4. `[[1,1,1],[-1,-3,-3],[2,4,4]]` 5. `[[2,3],[4,10]]` 6. `[[5,1],[4,2]]`
|
Example1. Find determinants using Sarrus Rule ... `[[1,2,3],[4,5,6],[7,8,9]]`Solution:Write first 2 columns of matrix to right of 3rd column, so we have total 5 columns. `A=` | | 1 | 2 | 3 | 1 | 2 | | | 4 | 5 | 6 | 4 | 5 | | | 7 | 8 | 9 | 7 | 8 | |
|
`A=` | | 1 | 2 | 3 | 1 | 2 | | | 4 | 5 | 6 | 4 | 5 | | | 7 | 8 | 9 | 7 | 8 | |
|
Now, add products of diagonals going from top to bottom (blue lines) and subtract products of diagonals going from bottom to top (red lines). `={1*5*9+2*6*7+3*4*8}-{7*5*3+8*6*1+9*4*2}` `=(45+84+96)-(105+48+72)` `=225-225` `=0`
|
|
|
|
|