|
|
|
|
Code is changed on 22.07.2025, Now it also works for Complex Number.
For wrong or incomplete solution, please submit the feedback form.
So, I will try my best to improve it soon.
|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
|
|
LQ Decomposition calculator
|
1. `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]`
2. `[[1,-4],[2,3],[2,2]]`
3. `[[3,-6],[4,-8],[0,1]]`
4. `[[1,2,4],[0,0,5],[0,3,6]]`
|
Example1. Find LQ Decomposition ... `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]`Solution:| Here `A` | = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
Suppose you want a `LQ` factorization of a matrix `A`, then you do a QR factorization of `A^T`, i.e., `A^T=UR`, where `U` is orthogonal and `R` is upper triangular. Then `A=LQ=R^TU^T` where `L=R^T` is lower triangular, and `Q=U^T` is orthogonal. | `A` | = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
| `A'` | = | | `1` | `1` | `1` | `1` | | | `-1` | `4` | `4` | `-1` | | | `4` | `-2` | `2` | `0` | |
|
Now, UR Decomposition of `A'` by GramSchmidt Method `r_(11)=||q_1'||=sqrt((1)^2+(-1)^2+(4)^2)=sqrt(18)=4.2426406871` | `q_1 = 1/(||q_1'||) * q_1'` | = | `1/4.2426406871 * ` | | = | | `0.2357022604` | | | `-0.2357022604` | | | `0.9428090416` | |
|
| `r_(12)=q_1^T * a_2` | = | | [ | `0.2357022604` | `-0.2357022604` | `0.9428090416` | ] |
| `xx` | | `=-2.5927248644` |
| `q_2'` | `=a_2-r_(12) * q_1` | = | | `+2.5927248644` | | `0.2357022604` | | | `-0.2357022604` | | | `0.9428090416` | |
|
| = | | `1.6111111111` | | | `3.3888888889` | | | `0.4444444444` | |
|
`r_(22)=||q_2'||=sqrt((1.6111111111)^2+(3.3888888889)^2+(0.4444444444)^2)=sqrt(14.2777777778)=3.7785946829` | `q_2 = 1/(||q_2'||) * q_2'` | = | `1/3.7785946829 * ` | | `1.6111111111` | | | `3.3888888889` | | | `0.4444444444` | |
| = | | `0.4263783883` | | | `0.8968648858` | | | `0.1176216244` | |
|
| `r_(13)=q_1^T * a_3` | = | | [ | `0.2357022604` | `-0.2357022604` | `0.9428090416` | ] |
| `xx` | | `=1.178511302` |
| `r_(23)=q_2^T * a_3` | = | | [ | `0.4263783883` | `0.8968648858` | `0.1176216244` | ] |
| `xx` | | `=4.2490811804` |
| `q_3'` | `=a_3-r_(13) * q_1-r_(23) * q_2` | = | | `-1.178511302` | | `0.2357022604` | | | `-0.2357022604` | | | `0.9428090416` | |
| `-4.2490811804` | | `0.4263783883` | | | `0.8968648858` | | | `0.1176216244` | |
|
| = | | `-1.0894941634` | | | `0.46692607` | | | `0.3891050584` | |
|
`r_(33)=||q_3'||=sqrt((-1.0894941634)^2+(0.46692607)^2+(0.3891050584)^2)=sqrt(1.5564202335)=1.2475657231` | `q_3 = 1/(||q_3'||) * q_3'` | = | `1/1.2475657231 * ` | | `-1.0894941634` | | | `0.46692607` | | | `0.3891050584` | |
| = | | `-0.8732960062` | | | `0.3742697169` | | | `0.3118914308` | |
|
| `r_(14)=q_1^T * a_4` | = | | [ | `0.2357022604` | `-0.2357022604` | `0.9428090416` | ] |
| `xx` | | `=0.4714045208` |
| `r_(24)=q_2^T * a_4` | = | | [ | `0.4263783883` | `0.8968648858` | `0.1176216244` | ] |
| `xx` | | `=-0.4704864975` |
| `r_(34)=q_3^T * a_4` | = | | [ | `-0.8732960062` | `0.3742697169` | `0.3118914308` | ] |
| `xx` | | `=-1.2475657231` |
| `q_4'` | `=a_4-r_(14) * q_1-r_(24) * q_2-r_(34) * q_3` | = | | `-0.4714045208` | | `0.2357022604` | | | `-0.2357022604` | | | `0.9428090416` | |
| `+0.4704864975` | | `0.4263783883` | | | `0.8968648858` | | | `0.1176216244` | |
| `+1.2475657231` | | `-0.8732960062` | | | `0.3742697169` | | | `0.3118914308` | |
|
| = | |
`r_(44)=||q_4'||=sqrt((0)^2+(0)^2+(0)^2)=sqrt(0)=0` | `q_4 = 1/(||q_4'||) * q_4'` | = | `1/0 * ` | | = | | `-0.5494422558` | | | `-0.1373605639` | | | `-0.8241633837` | |
|
| `U` | `=[q_1,q_2,q_3,q_4]` | = | | `0.2357022604` | `0.4263783883` | `-0.8732960062` | `-0.5494422558` | | | `-0.2357022604` | `0.8968648858` | `0.3742697169` | `-0.1373605639` | | | `0.9428090416` | `0.1176216244` | `0.3118914308` | `-0.8241633837` | |
|
| `R` | = | | `r_(11)` | `r_(12)` | `r_(13)` | `r_(14)` | | | `0` | `r_(22)` | `r_(23)` | `r_(24)` | | | `0` | `0` | `r_(33)` | `r_(34)` | | | `0` | `0` | `0` | `r_(44)` | |
| = | | `4.2426406871` | `-2.5927248644` | `1.178511302` | `0.4714045208` | | | `0` | `3.7785946829` | `4.2490811804` | `-0.4704864975` | | | `0` | `0` | `1.2475657231` | `-1.2475657231` | | | `0` | `0` | `0` | `0` | |
|
Now, L and Q from R and U | `L=R^T` | = | | `4.2426406871` | `0` | `0` | `0` | | | `-2.5927248644` | `3.7785946829` | `0` | `0` | | | `1.178511302` | `4.2490811804` | `1.2475657231` | `0` | | | `0.4714045208` | `-0.4704864975` | `-1.2475657231` | `0` | |
|
| `Q=U^T` | = | | `0.2357022604` | `-0.2357022604` | `0.9428090416` | | | `0.4263783883` | `0.8968648858` | `0.1176216244` | | | `-0.8732960062` | `0.3742697169` | `0.3118914308` | | | `-0.5494422558` | `-0.1373605639` | `-0.8241633837` | |
|
checking `L xx Q = A?` | `L xx Q` | = | | `4.2426406871` | `0` | `0` | `0` | | | `-2.5927248644` | `3.7785946829` | `0` | `0` | | | `1.178511302` | `4.2490811804` | `1.2475657231` | `0` | | | `0.4714045208` | `-0.4704864975` | `-1.2475657231` | `0` | |
| `xx` | | `0.2357022604` | `-0.2357022604` | `0.9428090416` | | | `0.4263783883` | `0.8968648858` | `0.1176216244` | | | `-0.8732960062` | `0.3742697169` | `0.3118914308` | | | `-0.5494422558` | `-0.1373605639` | `-0.8241633837` | |
| = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
| and `A` | = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
Solution is possible.
|
|
|
|
|
|