|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
LQ Decomposition calculator
|
1. `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]` 2. `[[1,-4],[2,3],[2,2]]` 3. `[[3,-6],[4,-8],[0,1]]` 4. `[[1,2,4],[0,0,5],[0,3,6]]`
|
Example1. Find LQ Decomposition ... `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]`Solution:Here `A` | = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
Suppose you want a `LQ` factorization of a matrix `A`, then you do a QR factorization of `A^T`, i.e., `A^T=UR`, where `U` is orthogonal and `R` is upper triangular. Then `A=LQ=R^TU^T` where `L=R^T` is lower triangular, and `Q=U^T` is orthogonal. `A` | = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
`A'` | = | | `1` | `1` | `1` | `1` | | | `-1` | `4` | `4` | `-1` | | | `4` | `-2` | `2` | `0` | |
|
Now, QR Decomposition of `A'` by GramSchmidt Method `r_(11)=||q_1'||=sqrt(1^2+(-1)^2+4^2)=sqrt(18)=4.2426` `q_1 = 1/(||q_1'||) * q_1'` | = | `1/4.2426 * ` | | = | | `0.2357` | | | `-0.2357` | | | `0.9428` | |
|
`r_(12)=q_1^T * a_2` | = | [ | `0.2357` | `-0.2357` | `0.9428` | ] |
| `xx` | | `=-2.5927` |
`q_2'` | `=a_2-r_(12) * q_1` | = | | +2.5927 | | `0.2357` | | | `-0.2357` | | | `0.9428` | |
|
| = | |
`r_(22)=||q_2'||=sqrt(1.6111^2+3.3889^2+0.4444^2)=sqrt(14.2778)=3.7786` `q_2 = 1/(||q_2'||) * q_2'` | = | `1/3.7786 * ` | | = | |
`r_(13)=q_1^T * a_3` | = | [ | `0.2357` | `-0.2357` | `0.9428` | ] |
| `xx` | | `=1.1785` |
`r_(23)=q_2^T * a_3` | = | [ | `0.4264` | `0.8969` | `0.1176` | ] |
| `xx` | | `=4.2491` |
`q_3'` | `=a_3-r_(13) * q_1-r_(23) * q_2` | = | | -1.1785 | | `0.2357` | | | `-0.2357` | | | `0.9428` | |
| -4.2491 | |
| = | | `-1.0895` | | | `0.4669` | | | `0.3891` | |
|
`r_(33)=||q_3'||=sqrt((-1.0895)^2+0.4669^2+0.3891^2)=sqrt(1.5564)=1.2476` `q_3 = 1/(||q_3'||) * q_3'` | = | `1/1.2476 * ` | | `-1.0895` | | | `0.4669` | | | `0.3891` | |
| = | | `-0.8733` | | | `0.3743` | | | `0.3119` | |
|
`r_(14)=q_1^T * a_4` | = | [ | `0.2357` | `-0.2357` | `0.9428` | ] |
| `xx` | | `=0.4714` |
`r_(24)=q_2^T * a_4` | = | [ | `0.4264` | `0.8969` | `0.1176` | ] |
| `xx` | | `=-0.4705` |
`r_(34)=q_3^T * a_4` | = | [ | `-0.8733` | `0.3743` | `0.3119` | ] |
| `xx` | | `=-1.2476` |
`q_4'` | `=a_4-r_(14) * q_1-r_(24) * q_2-r_(34) * q_3` | = | | -0.4714 | | `0.2357` | | | `-0.2357` | | | `0.9428` | |
| +0.4705 | | +1.2476 | | `-0.8733` | | | `0.3743` | | | `0.3119` | |
|
| = | |
`r_(44)=||q_4'||=sqrt((0)^2+(0)^2+(0)^2)=sqrt(0)=0` `q_4 = 1/(||q_4'||) * q_4'` | = | `1/0 * ` | | = | | `-0.5494` | | | `-0.1374` | | | `-0.8242` | |
|
`U` | `=[q_1,q_2,q_3,q_4]` | = | | `0.2357` | `0.4264` | `-0.8733` | `-0.5494` | | | `-0.2357` | `0.8969` | `0.3743` | `-0.1374` | | | `0.9428` | `0.1176` | `0.3119` | `-0.8242` | |
|
`R` | = | | `r_(11)` | `r_(12)` | `r_(13)` | `r_(14)` | | | `0` | `r_(22)` | `r_(23)` | `r_(24)` | | | `0` | `0` | `r_(33)` | `r_(34)` | | | `0` | `0` | `0` | `r_(44)` | |
| = | | `4.2426` | `-2.5927` | `1.1785` | `0.4714` | | | `0` | `3.7786` | `4.2491` | `-0.4705` | | | `0` | `0` | `1.2476` | `-1.2476` | | | `0` | `0` | `0` | `0` | |
|
Now, L and Q from R and U `L=R^T` | = | | `4.2426` | `0` | `0` | `0` | | | `-2.5927` | `3.7786` | `0` | `0` | | | `1.1785` | `4.2491` | `1.2476` | `0` | | | `0.4714` | `-0.4705` | `-1.2476` | `0` | |
|
`Q=U^T` | = | | `0.2357` | `-0.2357` | `0.9428` | | | `0.4264` | `0.8969` | `0.1176` | | | `-0.8733` | `0.3743` | `0.3119` | | | `-0.5494` | `-0.1374` | `-0.8242` | |
|
checking `L xx Q = A?` `L xx Q` | = | | `4.2426` | `0` | `0` | `0` | | | `-2.5927` | `3.7786` | `0` | `0` | | | `1.1785` | `4.2491` | `1.2476` | `0` | | | `0.4714` | `-0.4705` | `-1.2476` | `0` | |
| `xx` | | `0.2357` | `-0.2357` | `0.9428` | | | `0.4264` | `0.8969` | `0.1176` | | | `-0.8733` | `0.3743` | `0.3119` | | | `-0.5494` | `-0.1374` | `-0.8242` | |
| = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
and `A` | = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
|
|
|
|
|