|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
LU Decomposition using Gauss Elimination method of Matrix calculator
|
1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]` 2. `[[6,-2,2],[-2,3,-1],[2,-1,3]]` 3. `[[3,2,4],[2,0,2],[4,2,3]]` 4. `[[1,1,1],[-1,-3,-3],[2,4,4]]` 5. `[[2,3],[4,10]]` 6. `[[5,1],[4,2]]`
|
Example1. Find LU Decomposition using Gauss Elimination method of Matrix ... `[[3,2,4],[2,0,2],[4,2,3]]`Solution:`LU` decomposition : If we have a square matrix A, then an upper triangular matrix U can be obtained without pivoting under Gaussian Elimination method, and there exists lower triangular matrix L such that A=LU. Here `A` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
Using Gaussian Elimination method `R_2 larr R_2-` `(2/3)``xx R_1` `[:.L_(2,1)=color{blue}{2/3}]` = | | `3` | `2` | `4` | | | `0` | `-4/3` | `-2/3` | | | `4` | `2` | `3` | |
|
`R_3 larr R_3-` `(4/3)``xx R_1` `[:.L_(3,1)=color{blue}{4/3}]` = | | `3` | `2` | `4` | | | `0` | `-4/3` | `-2/3` | | | `0` | `-2/3` | `-7/3` | |
|
`R_3 larr R_3-` `(1/2)``xx R_2` `[:.L_(3,2)=color{blue}{1/2}]` = | | `3` | `2` | `4` | | | `0` | `-4/3` | `-2/3` | | | `0` | `0` | `-2` | |
|
`:.U` | = | | `3` | `2` | `4` | | | `0` | `-4/3` | `-2/3` | | | `0` | `0` | `-2` | |
|
`L` is just made up of the multipliers we used in Gaussian elimination with 1s on the diagonal. `:.L` | = | | `1` | `0` | `0` | | | `color{blue}{2/3}` | `1` | `0` | | | `color{blue}{4/3}` | `color{blue}{1/2}` | `1` | |
|
`:.` LU decomposition for A is `A` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
| = | | `1` | `0` | `0` | | | `2/3` | `1` | `0` | | | `4/3` | `1/2` | `1` | |
| `xx` | | `3` | `2` | `4` | | | `0` | `-4/3` | `-2/3` | | | `0` | `0` | `-2` | |
| = | `LU` |
|
|
|
|
|