|
|
|
|
Pivots of a Matrix calculator
|
1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
2. `[[6,-2,2],[-2,3,-1],[2,-1,3]]`
3. `[[3,2,4],[2,0,2],[4,2,3]]`
4. `[[1,1,1],[-1,-3,-3],[2,4,4]]`
5. `[[2,3],[4,10]]`
6. `[[5,1],[4,2]]`
|
Example1. Find Pivots of a Matrix ... `[[8,-6,2],[-6,7,-4],[2,-4,3]]`Solution:First apply Gaussian Elimination method to find Pivots `A` | = | | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
`R_2 larr R_2+3/4xx R_1` = | | `8` | `-6` | `2` | | | `0` `0=-6+3/4xx8` `R_2 larr R_2+3/4xx R_1` | `5/2` `5/2=7+3/4xx-6` `R_2 larr R_2+3/4xx R_1` | `-5/2` `-5/2=-4+3/4xx2` `R_2 larr R_2+3/4xx R_1` | | | `2` | `-4` | `3` | |
|
`R_3 larr R_3-1/4xx R_1` = | | `8` | `-6` | `2` | | | `0` | `5/2` | `-5/2` | | | `0` `0=2-1/4xx8` `R_3 larr R_3-1/4xx R_1` | `-5/2` `-5/2=-4-1/4xx-6` `R_3 larr R_3-1/4xx R_1` | `5/2` `5/2=3-1/4xx2` `R_3 larr R_3-1/4xx R_1` | |
|
`R_3 larr R_3+ R_2` = | | `8` | `-6` | `2` | | | `0` | `5/2` | `-5/2` | | | `0` `0=0+0` `R_3 larr R_3+ R_2` | `0` `0=-5/2+5/2` `R_3 larr R_3+ R_2` | `0` `0=5/2+-5/2` `R_3 larr R_3+ R_2` | |
|
Now, Pivots are the first non-zero element in each row of this eliminated matrix. Pivots are `8,5/2`
|
|
|
|
|