|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
QR Decomposition (Gram Schmidt Method) calculator
|
1. `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]` 2. `[[1,-4],[2,3],[2,2]]` 3. `[[3,-6],[4,-8],[0,1]]` 4. `[[1,2,4],[0,0,5],[0,3,6]]`
|
Example1. Find QR Decomposition (Gram Schmidt Method) ... `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]`Solution:Here `A` | = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
`r_(11)=||q_1'||=sqrt(1^2+1^2+1^2+1^2)=sqrt(4)=2` `q_1 = 1/(||q_1'||) * q_1'` | = | `1/2 * ` | | = | |
`r_(12)=q_1^T * a_2` | = | | `xx` | | `=3` |
`q_2'` | `=a_2-r_(12) * q_1` | = | | = | |
`r_(22)=||q_2'||=sqrt((-2.5)^2+2.5^2+2.5^2+(-2.5)^2)=sqrt(25)=5` `q_2 = 1/(||q_2'||) * q_2'` | = | `1/5 * ` | | = | |
`r_(13)=q_1^T * a_3` | = | | `xx` | | `=2` |
`r_(23)=q_2^T * a_3` | = | | `xx` | | `=-2` |
`q_3'` | `=a_3-r_(13) * q_1-r_(23) * q_2` | = | | = | |
`r_(33)=||q_3'||=sqrt(2^2+(-2)^2+2^2+(-2)^2)=sqrt(16)=4` `q_3 = 1/(||q_3'||) * q_3'` | = | `1/4 * ` | | = | |
`Q` | `=[q_1,q_2,q_3]` | = | | `0.5` | `-0.5` | `0.5` | | | `0.5` | `0.5` | `-0.5` | | | `0.5` | `0.5` | `0.5` | | | `0.5` | `-0.5` | `-0.5` | |
|
`R` | = | | `r_(11)` | `r_(12)` | `r_(13)` | | | `0` | `r_(22)` | `r_(23)` | | | `0` | `0` | `r_(33)` | |
| = | | `2` | `3` | `2` | | | `0` | `5` | `-2` | | | `0` | `0` | `4` | |
|
checking `Q xx R = A?` `Q xx R` | = | | `0.5` | `-0.5` | `0.5` | | | `0.5` | `0.5` | `-0.5` | | | `0.5` | `0.5` | `0.5` | | | `0.5` | `-0.5` | `-0.5` | |
| `xx` | | `2` | `3` | `2` | | | `0` | `5` | `-2` | | | `0` | `0` | `4` | |
| = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
and `A` | = | | `1` | `-1` | `4` | | | `1` | `4` | `-2` | | | `1` | `4` | `2` | | | `1` | `-1` | `0` | |
|
|
|
|
|
|