|
|
Home > Algebra calculators > If `alpha` and `beta` are roots of quadratic equation, then find `alpha^2+beta^2` calculator
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
If alpha and beta are roots of quadratic equation, then find alpha^2+beta^2 calculator
|
1. If `alpha` and `beta` are roots of equation
1. `3x^2+8x+2=0`, find `a^2+b^2`
2. `3x^2+8x+2=0`, find `a-b`
3. `3x^2+8x+2=0`, find `a^3+b^3`
4. `3x^2+8x+2=0`, find `a/b^2+b/a^2`
5. `3x^2+8x+2=0`, find `ab^2+ba^2`
6. `3x^2+8x+2=0`, find `a/b+b/a`
|
Example1. If `alpha` and `beta` are roots of quadratic equation `3x^2+8x+2=0`, then find the value of `alpha^2+beta^2`Solution:`3x^2+8x+2=0` Comparing the given equation with `ax^2+bx+c=0` We get `a=3,b=8,c=2` Sum of roots `=alpha+beta=(-b)/a=(-8)/3` Product of roots `=alpha*beta=c/a=2/3` Now we have to find `alpha^2+beta^2` `alpha^2+beta^2=52/9` We know that
`alpha^2+beta^2=(alpha+beta)^2-2alphabeta`
`:.alpha^2+beta^2=((-8)/3)^2-2*2/3`
`:.alpha^2+beta^2=64/9-4/3`
`:.alpha^2+beta^2=52/9`
`:.alpha^2+beta^2=52/9`
|
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|