Home > Algebra calculators > Solving quadratic equations using the quadratic formula calculator

Method and examples
Method

2. Quadratic equations using the quadratic formula
 
Equation =
Find 

SolutionHelp
1. Roots of quadratic equation
1. Solving quadratic equations by factoring
2. Solving quadratic equations using the quadratic formula
3. Discriminant
4. Discriminant & nature of roots

Here x^2 = x^2 = x2 and 2x = 2*x

1. 25x^2 - 30x + 9 = 0
2. 2x^2 + 5x - 10 = 0
3. x^2 + 10x - 56 = 0
4. 4x^2 + 11x + 10 = 0
5. x^2 - 2x = 8
6. x^2 - 25 = 0
7. x^2 + 5x + 3 = 0
8. 9x^2 - 24x + 16 = 0

2. Find the quadratic equation whose roots are alpha and beta
Input Roots of the Quadratic Equation Like ...

1. alpha=3, beta=-4
2. alpha=-1/2, beta=+2/3
3. alpha=2, beta=-2/3
4. alpha=3sqrt(7), beta=-3sqrt(7)
5. alpha=sqrt(7), beta=-sqrt(7)
6. alpha=1+3sqrt(2), beta=1-3sqrt(2)
7. alpha=(3+5sqrt(3))/2, beta=(3-5sqrt(3))/2
8. alpha=(-3+5sqrt(3))/2, beta=(-3-5sqrt(3))/2
9. alpha=(-3+sqrt(3))/2, beta=(-3-sqrt(3))/2


Example
1. Find the roots of Quadratic Equation x^2+10x-56=0 by the method of perfect square

Solution:
x^2+10x-56=0

=>x^2+10x-56 = 0

Comparing the given equation with the standard quadratic equation ax^2+bx+c=0,

we get, a=1, b=10, c=-56.

:. Delta=b^2-4ac

=(10)^2-4 (1) (-56)

=100+224

=324

:. sqrt(Delta)=sqrt(324)=18

Now, alpha=(-b+sqrt(Delta))/(2a)

=(-(10)+18)/(2*1)

=8/2

=4

and, beta=(-b-sqrt(Delta))/(2a)

=(-(10)-18)/(2*1)

=-28/2

=-14




Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.