|
|
|
|
Home > Statistical Methods calculators > Raw Moments (Moments about origin), Central Moments (Moments about mean), Moment coefficient of skewness, Moment coefficient of kurtosis for grouped data calculator
|
|
|
|
|
|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
|
|
Raw Moments and Central Moments for grouped data calculator
|
1. Calculate the mean and standard deviation for the following distribution
| X |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
| f |
3 |
6 |
9 |
13 |
8 |
5 |
4 |
2. Calculate the mean and standard deviation for the following distribution
| Class |
50-55 |
45-50 |
40-45 |
35-40 |
30-35 |
35-30 |
20-25 |
| f |
25 |
30 |
40 |
45 |
80 |
110 |
170 |
|
Example1. Calculate Moment about mean from the following grouped data
| X | Frequency | | 10 | 3 | | 11 | 12 | | 12 | 18 | | 13 | 12 | | 14 | 3 | Solution:Moments :Mean `bar x=(sum f x)/n` `=576/48` `=12` `x` `(2)` | `f` `(3)` | `f*x` `(4)=(2)xx(3)` | `(x-bar x)` `(5)` | `f*(x-bar x)` `(6)=(3)xx(5)` | `f*(x-bar x)^2` `(7)=(5)xx(6)` | `f*(x-bar x)^3` `(8)=(5)xx(7)` | `f*(x-bar x)^4` `(9)=(5)xx(8)` | | 10 | 3 | 30 | -2 | -6 | 12 | -24 | 48 | | 11 | 12 | 132 | -1 | -12 | 12 | -12 | 12 | | 12 | 18 | 216 | 0 | 0 | 0 | 0 | 0 | | 13 | 12 | 156 | 1 | 12 | 12 | 12 | 12 | | 14 | 3 | 42 | 2 | 6 | 12 | 24 | 48 | | --- | --- | --- | --- | --- | --- | --- | --- | | -- | `n=48` | `sum f*x=576` | -- | `=0` | `=48` | `=0` | `=120` | Now, calculate Central MomentsFirst Central Moment`m_1=(sum f*(x-bar x))/n` `=(0)/(48)` `=0` Second Central Moment`m_2=(sum f*(x-bar x)^2)/n` `=(48)/(48)` `=1` Third Central Moment`m_3=(sum f*(x-bar x)^3)/n` `=(0)/(48)` `=0` Fourth Central Moment`m_4=(sum f*(x-bar x)^4)/n` `=(120)/(48)` `=2.5` Skewness `beta_1=(m_3)^2/(m_2)^3` `=(0)^2/(1)^3` `=(0)/(1)` `=0` Kurtosis `beta_2=(m_4)/(m_2)^2` `=(2.5)/(1)^2` `=(2.5)/(1)` `=2.5` Moment coefficient of skewness`beta_1=0` : The distribution is perfectly symmetrical (like a normal distribution). Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
|
|
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|
|