|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Sample Variance, Standard deviation and coefficient of variation for ungrouped data calculator
|
1. 85,96,76,108,85,80,100,85,70,95
2. 3,13,11,11,5,4,2
3. 3,23,13,11,15,3,5,4,2
4. 69,66,67,69,64,63,65,68,72
5. 4,14,12,16,6,3,1,2,3
6. 73,70,71,73,68,67,69,72,76,71
7. 10,50,30,20,10,20,70,30
|
Example1. Calculate Sample Variance `(S^2)` from the following data `3,13,11,15,5,4,2`Solution:`x` | `x^2` | 3 | 9 | 13 | 169 | 11 | 121 | 15 | 225 | 5 | 25 | 4 | 16 | 2 | 4 | --- | --- | `sum x=53` | `sum x^2=569` |
Mean `bar x=(sum x)/n` `=(3+13+11+15+5+4+2)/7` `=53/7` `=7.5714`
Sample Variance `S^2 = (sum x^2 - (sum x)^2/n)/(n-1)` `=(569 - (53)^2/7)/6` `=(569 - 401.2857)/6` `=167.7143/6` `=27.9524`
|
|
|
|
|
|