|
Method and examples
|
Method
|
Find Population Skewness, Kurtosis for ungrouped data
|
Enter Data
|
|
|
|
Standard deviation using Direct method or Assumed mean method
Method
|
|
- `85,96,76,108,85,80,100,85,70,95`
- `3,13,11,15,5,4,2`
- `3,23,13,11,15,5,4,2`
- `69,66,67,69,64,63,65,68,72`
- `4,14,12,16,6,3,1,2,3`
- `73,70,71,73,68,67,69,72,76,71`
- `10,50,30,20,10,20,70,30`
- `21,23,19,17,12,15,15,17,17,19,23,23,21,23,25,25,21,19,19,19`
- `2,3,7,8,8,5,5,3,7,3,1,8,6,7,4,5,6,3,2,4,3,4,9,8,3`
|
|
Decimal Place =
|
|
log(x)/ln(x) Option for Geometric mean =
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Population Skewness, Kurtosis for ungrouped data calculator
|
1. 85,96,76,108,85,80,100,85,70,95
2. 3,13,11,11,5,4,2
3. 3,23,13,11,15,3,5,4,2
4. 69,66,67,69,64,63,65,68,72
5. 4,14,12,16,6,3,1,2,3
6. 73,70,71,73,68,67,69,72,76,71
7. 10,50,30,20,10,20,70,30
|
Example1. Calculate Population Skewness from the following data `85,96,76,108,85,80,100,85,70,95`Solution:Skewness :Mean `bar x=(sum x)/n` `=(85+96+76+108+85+80+100+85+70+95)/10` `=880/10` `=88` `x` | `(x - bar x)` `= (x - 88)` | `(x - bar x)^2` `= (x - 88)^2` | `(x - bar x)^3` `= (x - 88)^3` | 85 | -3 | 9 | -27 | 96 | 8 | 64 | 512 | 76 | -12 | 144 | -1728 | 108 | 20 | 400 | 8000 | 85 | -3 | 9 | -27 | 80 | -8 | 64 | -512 | 100 | 12 | 144 | 1728 | 85 | -3 | 9 | -27 | 70 | -18 | 324 | -5832 | 95 | 7 | 49 | 343 | --- | --- | --- | --- | 880 | 0 | 1216 | 2430 |
Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)` `=sqrt(1216/10)` `=sqrt(121.6)` `=11.0272`
Population Skewness `= (sum(x - bar x)^3)/(n*S^3)` `=2430/(10*(11.0272)^3)` `=2430/(10*1340.9123)` `=0.1812`
|
|
|
|
|
|