|
|
|
|
Home > Statistical Methods calculators > Raw Moments (Moments about origin), Central Moments (Moments about mean), Moment coefficient of skewness, Moment coefficient of kurtosis for ungrouped data calculator
|
|
|
|
|
|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
|
|
Raw Moments and Central Moments for ungrouped data calculator
|
1. 85,96,76,108,85,80,100,85,70,95
2. 3,13,11,11,5,4,2
3. 3,23,13,11,15,3,5,4,2
4. 69,66,67,69,64,63,65,68,72
5. 4,14,12,16,6,3,1,2,3
6. 73,70,71,73,68,67,69,72,76,71
7. 10,50,30,20,10,20,70,30
|
Example1. Calculate Moment about mean from the following data `10,50,30,20,10,20,70,30`Solution:Moments :Mean `bar x=(sum x)/n` `=(10+50+30+20+10+20+70+30)/8` `=240/8` `=30` | `x` | `(x-bar x)` `=(x-30)` | `(x-bar x)^2` `=(x-30)^2` | `(x-bar x)^3` `=(x-30)^3` | `(x-bar x)^4` `=(x-30)^4` | | 10 | -20 | 400 | -8000 | 160000 | | 50 | 20 | 400 | 8000 | 160000 | | 30 | 0 | 0 | 0 | 0 | | 20 | -10 | 100 | -1000 | 10000 | | 10 | -20 | 400 | -8000 | 160000 | | 20 | -10 | 100 | -1000 | 10000 | | 70 | 40 | 1600 | 64000 | 2560000 | | 30 | 0 | 0 | 0 | 0 | | --- | --- | --- | --- | --- | | `240` | `0` | `3000` | `54000` | `3060000` | Now, calculate Central MomentsFirst Central Moment`m_1=(sum (x-bar x))/n` `=(0)/(8)` `=0` Second Central Moment`m_2=(sum (x-bar x)^2)/n` `=(3000)/(8)` `=375` Third Central Moment`m_3=(sum (x-bar x)^3)/n` `=(54000)/(8)` `=6750` Fourth Central Moment`m_4=(sum (x-bar x)^4)/n` `=(3060000)/(8)` `=382500` Skewness `beta_1=(m_3)^2/(m_2)^3` `=(6750)^2/(375)^3` `=(45562500)/(52734375)` `=0.864` Kurtosis `beta_2=(m_4)/(m_2)^2` `=(382500)/(375)^2` `=(382500)/(140625)` `=2.72` Moment coefficient of skewness`beta_1>0` : The distribution is positively skewed (a longer tail to the right). Moment coefficient of kurtosis`beta_2<3` : platykurtic (flatter with lighter tails)
|
|
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|
|