|
Definition and examples
|
Vector Algebra
|
Vector Operation
|
Coplanar vectors calculator |
|
|
|
|
- `(1,2,3), (4,5,6),(7,8,9)`
- `(1,2,3), (2,4,6),(3,4,5)`
- `(5,-1,1), (-2,3,4),(3,4,5)`
- `(5,6,1), (0,2,3),(3,4,5)`
|
Mode =
|
Decimal Place =
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Coplanar vectors calculator
|
1. `(1,2,3), (4,5,6),(7,8,9)` 2. `(1,2,3), (2,4,6),(3,4,5)` 3. `(5,-1,1), (-2,3,4),(3,4,5)` 4. `(5,6,1), (0,2,3),(3,4,5)`
|
Example1. Find isCoplanar(A,B,C) `A=(1,2,3)`,`B=(2,4,6)`,`C=(3,4,5)`
Solution: Here `vec A=(1,2,3),vec B=(2,4,6),vec C=(3,4,5)`
The 3 vectors are coplanar, if their scalar triple product is zero 1. Calculate scalar triple product `A*(B xx C)`
`=|[A_1,A_2,A_3],[B_1,B_2,B_3],[C_1,C_2,C_3]|`
`=|[1,2,3],[2,4,6],[3,4,5]|`
`=1(4xx5-6xx4)-2(2xx5-6xx3)+3(2xx4-4xx3)`
`=1(20-24)-2(10-18)+3(8-12)`
`=1(-4)-2(-8)+3(-4)`
`=-4+16-12`
`=0`
Here scalar triple product is zero, so vectors are coplanar
|
|
|
|
|