|
Definition and examples
|
Vector Algebra
|
Vector Operation
|
Orthogonal vectors calculator |
|
|
|
|
- `(3,4), (-4,3)`
- `(1,2), (3,4)`
- `(3,4,0), (-4,3,2)`
- `(3,4,0), (2,2,1)`
|
Mode =
|
Decimal Place =
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Orthogonal vectors calculator
|
1. `(3,4), (-4,3)` 2. `(1,2), (3,4)` 3. `(3,4,0), (-4,3,2)` 4. `(3,4,0), (2,2,1)`
|
Example1. Find isOrthogonal(A,B) `A=(3,4,0)`,`B=(-4,3,2)`
Solution: Here `vec A=(3,4,0),vec B=(-4,3,2)`
Two vectors `vec A` and `vec B` are orthogonal, if their dot product is zero. i.e. `vec A * vec B = 0`
1. Calculate dot product `vec A * vec B`
`=A_1*B_1 + A_2*B_2 + A_3*B_3`
`=3*(-4) + 4*3 + 0*2`
`=-12 + 12 + 0`
`=0`
Here dot product is zero, so vectors are orthogonal
|
|
|
|
|