|
Definition and examples
|
Vector Algebra
|
Vector Operation
|
Volume of pyramid determined by vectors calculator |
|
|
|
|
- `(1,2,3), (3,0,6),(7,1,9)`
- `(5,-1,1), (-2,3,4),(3,4,5)`
- `(5,6,1), (0,2,3),(3,4,5)`
|
Mode =
|
Decimal Place =
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Volume of pyramid determined by vectors calculator
|
1. `(1,2,3), (3,0,6),(7,1,9)` 2. `(5,-1,1), (-2,3,4),(3,4,5)` 3. `(5,6,1), (0,2,3),(3,4,5)`
|
Example1. Find VolumePyramid(A,B,C) `A=(1,2,3)`,`B=(3,0,6)`,`C=(7,1,9)`
Solution: Here `vec A=(1,2,3),vec B=(3,0,6),vec C=(7,1,9)`
Volume `=1/3|vec A * (vec B xx vec C)|`
1. Calculate scalar triple product `A*(B xx C)`
`=|[A_1,A_2,A_3],[B_1,B_2,B_3],[C_1,C_2,C_3]|`
`=|[1,2,3],[3,0,6],[7,1,9]|`
`=1(0xx9-6xx1)-2(3xx9-6xx7)+3(3xx1-0xx7)`
`=1(0-6)-2(27-42)+3(3-0)`
`=1(-6)-2(-15)+3(3)`
`=-6+30+9`
`=33`
2. Calculate pyramid volume Volume `=1/3 * 33=11`
|
|
|
|
|