1. Expand `(x+2)^2`
Solution:
`"Using the identity,"`
`(A+B)^2=A^2+2AB+B^2`
`"Here "A=x,B=2`
`=(x)^2+2(x)(2)+(2)^2`
`=x^2+4x+4`
2. Expand `(x-3)^2`
Solution:
`"Using the identity,"`
`(A-B)^2=A^2-2AB+B^2`
`"Here "A=x,B=3`
`=(x)^2-2(x)(3)+(3)^2`
`=x^2-6x+9`
3. Expand `(2x-5)^2`
Solution:
`"Using the identity,"`
`(A-B)^2=A^2-2AB+B^2`
`"Here "A=2x,B=5`
`=(2x)^2-2(2x)(5)+(5)^2`
`=4x^2-20x+25`
4. Expand `(3x+2)^2`
Solution:
`"Using the identity,"`
`(A+B)^2=A^2+2AB+B^2`
`"Here "A=3x,B=2`
`=(3x)^2+2(3x)(2)+(2)^2`
`=9x^2+12x+4`
5. Expand `(x+2y)^2`
Solution:
`"Using the identity,"`
`(A+B)^2=A^2+2AB+B^2`
`"Here "A=x,B=2y`
`=(x)^2+2(x)(2y)+(2y)^2`
`=x^2+4xy+4y^2`
6. Expand `(3x-2y)^2`
Solution:
`"Using the identity,"`
`(A-B)^2=A^2-2AB+B^2`
`"Here "A=3x,B=2y`
`=(3x)^2-2(3x)(2y)+(2y)^2`
`=9x^2-12xy+4y^2`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then