Home > Algebra calculators > Binomial expansion example

Binomial expansion Examples ( Enter your problem )
  1. Examples
Other related methods
  1. Formula
  2. FOIL Method Examples
  3. Expand Difference of Squares Examples
  4. Expand Perfect Squares of binomial Examples
  5. Expand Cubes Examples
  6. Expand Trinomials Examples
  7. Expand Perfect Squares of trinomial Examples
  8. Binomial expansion Examples

7. Expand Perfect Squares of trinomial Examples
(Previous method)

1. Examples





1. Expand `(x+2)^4`

Solution:
`(x+2)^4`

Using Binomial Theorem,

`(a+b)^n=((n),(0))a^nb^0+((n),(1))a^(n-1)b^1+((n),(2))a^(n-2)b^2+...+((n),(n))a^0b^n`

where `((n),(0))=1,((n),(1))=n,((n),(n))=1,((n),(r))=(n!)/(r!(n-r)!)`

`"Here "a=x,b=2,n=4`

`=((4),(0))(x)^4(2)^0+((4),(1))(x)^3(2)^1+((4),(2))(x)^2(2)^2+((4),(3))(x)^1(2)^3+((4),(4))(x)^0(2)^4`

`=1(x)^4(2)^0+4(x)^3(2)^1+(4!)/(2!(4-2)!)(x)^2(2)^2+(4!)/(3!(4-3)!)(x)^1(2)^3+1(x)^0(2)^4`

`=1(x^4)(1)+4(x^3)(2)+(4*3)/(2*1)(x^2)(4)+(4)/(1)(x)(8)+1(1)(16)`

`=1(x^4)(1)+4(x^3)(2)+6(x^2)(4)+4(x)(8)+1(1)(16)`

`=x^4+8x^3+24x^2+32x+16`


2. Expand `(x-3y)^5`

Solution:
`(x-3y)^5`

Using Binomial Theorem,

`(a+b)^n=((n),(0))a^nb^0+((n),(1))a^(n-1)b^1+((n),(2))a^(n-2)b^2+...+((n),(n))a^0b^n`

where `((n),(0))=1,((n),(1))=n,((n),(n))=1,((n),(r))=(n!)/(r!(n-r)!)`

`"Here "a=x,b=-3y,n=5`

`=((5),(0))(x)^5(-3y)^0+((5),(1))(x)^4(-3y)^1+((5),(2))(x)^3(-3y)^2+((5),(3))(x)^2(-3y)^3+((5),(4))(x)^1(-3y)^4+((5),(5))(x)^0(-3y)^5`

`=1(x)^5(-3y)^0+5(x)^4(-3y)^1+(5!)/(2!(5-2)!)(x)^3(-3y)^2+(5!)/(3!(5-3)!)(x)^2(-3y)^3+(5!)/(4!(5-4)!)(x)^1(-3y)^4+1(x)^0(-3y)^5`

`=1(x^5)(1)+5(x^4)(-3y)+(5*4)/(2*1)(x^3)(9y^2)+(5*4)/(2*1)(x^2)(-27y^3)+(5)/(1)(x)(81y^4)+1(1)(-243y^5)`

`=1(x^5)(1)+5(x^4)(-3y)+10(x^3)(9y^2)+10(x^2)(-27y^3)+5(x)(81y^4)+1(1)(-243y^5)`

`=x^5-15x^4y+90x^3y^2-270x^2y^3+405xy^4-243y^5`


3. Expand `(2x-3)^3`

Solution:
`(2x-3)^3`

`"Using the identity,"`

`(A-B)^3=A^3-B^3-3AB(A-B)`

`"Here "A=2x,B=3`

`=(2x)^3-(3)^3-3(2x)(3)((2x)-(3))`

`=8x^3-27-(18x)(2x-3)`

`=8x^3-27-36x^2+54x`



Second method :
Using Binomial Theorem,

`(a+b)^n=((n),(0))a^nb^0+((n),(1))a^(n-1)b^1+((n),(2))a^(n-2)b^2+...+((n),(n))a^0b^n`

where `((n),(0))=1,((n),(1))=n,((n),(n))=1,((n),(r))=(n!)/(r!(n-r)!)`

`"Here "a=2x,b=-3,n=3`

`=((3),(0))(2x)^3(-3)^0+((3),(1))(2x)^2(-3)^1+((3),(2))(2x)^1(-3)^2+((3),(3))(2x)^0(-3)^3`

`=1(2x)^3(-3)^0+3(2x)^2(-3)^1+(3!)/(2!(3-2)!)(2x)^1(-3)^2+1(2x)^0(-3)^3`

`=1(8x^3)(1)+3(4x^2)(-3)+(3)/(1)(2x)(9)+1(1)(-27)`

`=1(8x^3)(1)+3(4x^2)(-3)+3(2x)(9)+1(1)(-27)`

`=8x^3-36x^2+54x-27`


4. Expand `(3x+y)^4`

Solution:
`(3x+y)^4`

Using Binomial Theorem,

`(a+b)^n=((n),(0))a^nb^0+((n),(1))a^(n-1)b^1+((n),(2))a^(n-2)b^2+...+((n),(n))a^0b^n`

where `((n),(0))=1,((n),(1))=n,((n),(n))=1,((n),(r))=(n!)/(r!(n-r)!)`

`"Here "a=3x,b=y,n=4`

`=((4),(0))(3x)^4(y)^0+((4),(1))(3x)^3(y)^1+((4),(2))(3x)^2(y)^2+((4),(3))(3x)^1(y)^3+((4),(4))(3x)^0(y)^4`

`=1(3x)^4(y)^0+4(3x)^3(y)^1+(4!)/(2!(4-2)!)(3x)^2(y)^2+(4!)/(3!(4-3)!)(3x)^1(y)^3+1(3x)^0(y)^4`

`=1(81x^4)(1)+4(27x^3)(y)+(4*3)/(2*1)(9x^2)(y^2)+(4)/(1)(3x)(y^3)+1(1)(y^4)`

`=1(81x^4)(1)+4(27x^3)(y)+6(9x^2)(y^2)+4(3x)(y^3)+1(1)(y^4)`

`=81x^4+108x^3y+54x^2y^2+12xy^3+y^4`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



7. Expand Perfect Squares of trinomial Examples
(Previous method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.