Home > Algebra calculators > Binomial expansion example

Binomial expansion Expand all terms using Binomial theorem method Examples ( Enter your problem )
  1. Expand all terms using Binomial theorem method Examples
  2. Expand nth term using Binomial expansion method Examples
  3. Expand upto nth term using Binomial expansion method Examples
  4. Expand `x^n` term using Binomial expansion method Examples
  5. Find Middle term using Binomial expansion method Examples
  6. Find Constant term / independent term using Binomial expansion method Examples
Other related methods
  1. Formula
  2. FOIL Method Examples
  3. Expand Difference of Squares Examples
  4. Expand Perfect Squares of binomial Examples
  5. Expand Cubes Examples
  6. Expand Trinomials Examples
  7. Expand Perfect Squares of trinomial Examples
  8. Binomial expansion Examples

7. Expand Perfect Squares of trinomial Examples
(Previous method)
2. Expand nth term using Binomial expansion method Examples
(Next example)

1. Expand all terms using Binomial theorem method Examples





1. Expand `(x+2)^4` using Binomial theorem method

Solution:
`(x+2)^4`

Using Binomial Theorem,

`(a+b)^n=((n),(0))a^(n)b^(0)+((n),(1))a^(n-1)b^(1)+((n),(2))a^(n-2)b^(2)+...+((n),(n))a^(0)b^(n)`

where `((n),(0))=1,((n),(1))=n,((n),(n))=1,((n),(r))=(n!)/(r!(n-r)!)`

`"Here "a=x,b=2,n=4`

Now, `(x+2)^4`

`=((4),(0))(x)^4(2)^0+((4),(1))(x)^3(2)^1+((4),(2))(x)^2(2)^2+((4),(3))(x)^1(2)^3+((4),(4))(x)^0(2)^4`

`=1(x)^4(2)^0+4(x)^3(2)^1+(4!)/(2!(4-2)!)(x)^2(2)^2+(4!)/(3!(4-3)!)(x)^1(2)^3+1(x)^0(2)^4`

`=1(x^4)(1)+4(x^3)(2)+(4*3)/(2*1)(x^2)(4)+(4)/(1)(x)(8)+1(1)(16)`

`=1(x^4)(1)+4(x^3)(2)+6(x^2)(4)+4(x)(8)+1(1)(16)`

`=x^4+8x^3+24x^2+32x+16`
2. Expand `(2x-3y)^4` using Binomial theorem method

Solution:
`(2x-3y)^4`

Using Binomial Theorem,

`(a+b)^n=((n),(0))a^(n)b^(0)+((n),(1))a^(n-1)b^(1)+((n),(2))a^(n-2)b^(2)+...+((n),(n))a^(0)b^(n)`

where `((n),(0))=1,((n),(1))=n,((n),(n))=1,((n),(r))=(n!)/(r!(n-r)!)`

`"Here "a=2x,b=-3y,n=4`

Now, `(2x+(-3y))^4`

`=((4),(0))(2x)^4(-3y)^0+((4),(1))(2x)^3(-3y)^1+((4),(2))(2x)^2(-3y)^2+((4),(3))(2x)^1(-3y)^3+((4),(4))(2x)^0(-3y)^4`

`=1(2x)^4(-3y)^0+4(2x)^3(-3y)^1+(4!)/(2!(4-2)!)(2x)^2(-3y)^2+(4!)/(3!(4-3)!)(2x)^1(-3y)^3+1(2x)^0(-3y)^4`

`=1(16x^4)(1)+4(8x^3)(-3y)+(4*3)/(2*1)(4x^2)(9y^2)+(4)/(1)(2x)(-27y^3)+1(1)(81y^4)`

`=1(16x^4)(1)+4(8x^3)(-3y)+6(4x^2)(9y^2)+4(2x)(-27y^3)+1(1)(81y^4)`

`=16x^4-96x^3y+216x^2y^2-216xy^3+81y^4`
3. Expand `(2x+5)^5` using Binomial theorem method

Solution:
`(2x+5)^5`

Using Binomial Theorem,

`(a+b)^n=((n),(0))a^(n)b^(0)+((n),(1))a^(n-1)b^(1)+((n),(2))a^(n-2)b^(2)+...+((n),(n))a^(0)b^(n)`

where `((n),(0))=1,((n),(1))=n,((n),(n))=1,((n),(r))=(n!)/(r!(n-r)!)`

`"Here "a=2x,b=5,n=5`

Now, `(2x+5)^5`

`=((5),(0))(2x)^5(5)^0+((5),(1))(2x)^4(5)^1+((5),(2))(2x)^3(5)^2+((5),(3))(2x)^2(5)^3+((5),(4))(2x)^1(5)^4+((5),(5))(2x)^0(5)^5`

`=1(2x)^5(5)^0+5(2x)^4(5)^1+(5!)/(2!(5-2)!)(2x)^3(5)^2+(5!)/(3!(5-3)!)(2x)^2(5)^3+(5!)/(4!(5-4)!)(2x)^1(5)^4+1(2x)^0(5)^5`

`=1(32x^5)(1)+5(16x^4)(5)+(5*4)/(2*1)(8x^3)(25)+(5*4)/(2*1)(4x^2)(125)+(5)/(1)(2x)(625)+1(1)(3125)`

`=1(32x^5)(1)+5(16x^4)(5)+10(8x^3)(25)+10(4x^2)(125)+5(2x)(625)+1(1)(3125)`

`=32x^5+400x^4+2000x^3+5000x^2+6250x+3125`
4. Expand `(x/2+1/x)^5` using Binomial theorem method

Solution:
`(x/2+1/x)^5`

Using Binomial Theorem,

`(a+b)^n=((n),(0))a^(n)b^(0)+((n),(1))a^(n-1)b^(1)+((n),(2))a^(n-2)b^(2)+...+((n),(n))a^(0)b^(n)`

where `((n),(0))=1,((n),(1))=n,((n),(n))=1,((n),(r))=(n!)/(r!(n-r)!)`

`"Here "a=x/2,b=1/x,n=5`

Now, `(x/2+1/x)^5`

`=((5),(0))(x/2)^5(1/x)^0+((5),(1))(x/2)^4(1/x)^1+((5),(2))(x/2)^3(1/x)^2+((5),(3))(x/2)^2(1/x)^3+((5),(4))(x/2)^1(1/x)^4+((5),(5))(x/2)^0(1/x)^5`

`=1(x/2)^5(1/x)^0+5(x/2)^4(1/x)^1+(5!)/(2!(5-2)!)(x/2)^3(1/x)^2+(5!)/(3!(5-3)!)(x/2)^2(1/x)^3+(5!)/(4!(5-4)!)(x/2)^1(1/x)^4+1(x/2)^0(1/x)^5`

`=1((x^5)/32)(1)+5((x^4)/16)(1/x)+(5*4)/(2*1)((x^3)/8)(1/(x^2))+(5*4)/(2*1)((x^2)/4)(1/(x^3))+(5)/(1)(x/2)(1/(x^4))+1(1)(1/(x^5))`

`=1((x^5)/32)(1)+5((x^4)/16)(1/x)+10((x^3)/8)(1/(x^2))+10((x^2)/4)(1/(x^3))+5(x/2)(1/(x^4))+1(1)(1/(x^5))`

`=(x^5)/32+(5x^3)/16+(5x)/4+5/(2x)+5/(2x^3)+1/(x^5)`
5. Expand `(101)^5` using Binomial theorem method

Solution:
`(101)^5`

Using Binomial Theorem,

`(a+b)^n=((n),(0))a^(n)b^(0)+((n),(1))a^(n-1)b^(1)+((n),(2))a^(n-2)b^(2)+...+((n),(n))a^(0)b^(n)`

where `((n),(0))=1,((n),(1))=n,((n),(n))=1,((n),(r))=(n!)/(r!(n-r)!)`

`"Here "a=100,b=1,n=5`

Now, `(100+1)^5`

`=((5),(0))(100)^5(1)^0+((5),(1))(100)^4(1)^1+((5),(2))(100)^3(1)^2+((5),(3))(100)^2(1)^3+((5),(4))(100)^1(1)^4+((5),(5))(100)^0(1)^5`

`=1(100)^5(1)^0+5(100)^4(1)^1+(5!)/(2!(5-2)!)(100)^3(1)^2+(5!)/(3!(5-3)!)(100)^2(1)^3+(5!)/(4!(5-4)!)(100)^1(1)^4+1(100)^0(1)^5`

`=1(10000000000)(1)+5(100000000)(1)+(5*4)/(2*1)(1000000)(1)+(5*4)/(2*1)(10000)(1)+(5)/(1)(100)(1)+1(1)(1)`

`=1(10000000000)(1)+5(100000000)(1)+10(1000000)(1)+10(10000)(1)+5(100)(1)+1(1)(1)`

`=10000000000+500000000+10000000+100000+500+1`

`=10510100501`
6. Expand `(98)^6` using Binomial theorem method

Solution:
`(98)^6`

Using Binomial Theorem,

`(a+b)^n=((n),(0))a^(n)b^(0)+((n),(1))a^(n-1)b^(1)+((n),(2))a^(n-2)b^(2)+...+((n),(n))a^(0)b^(n)`

where `((n),(0))=1,((n),(1))=n,((n),(n))=1,((n),(r))=(n!)/(r!(n-r)!)`

`"Here "a=100,b=-2,n=6`

Now, `(100+(-2))^6`

`=((6),(0))(100)^6(-2)^0+((6),(1))(100)^5(-2)^1+((6),(2))(100)^4(-2)^2+((6),(3))(100)^3(-2)^3+((6),(4))(100)^2(-2)^4+((6),(5))(100)^1(-2)^5+((6),(6))(100)^0(-2)^6`

`=1(100)^6(-2)^0+6(100)^5(-2)^1+(6!)/(2!(6-2)!)(100)^4(-2)^2+(6!)/(3!(6-3)!)(100)^3(-2)^3+(6!)/(4!(6-4)!)(100)^2(-2)^4+(6!)/(5!(6-5)!)(100)^1(-2)^5+1(100)^0(-2)^6`

`=1(1000000000000)(1)+6(10000000000)(-2)+(6*5)/(2*1)(100000000)(4)+(6*5*4)/(3*2*1)(1000000)(-8)+(6*5)/(2*1)(10000)(16)+(6)/(1)(100)(-32)+1(1)(64)`

`=1(1000000000000)(1)+6(10000000000)(-2)+15(100000000)(4)+20(1000000)(-8)+15(10000)(16)+6(100)(-32)+1(1)(64)`

`=1000000000000-120000000000+6000000000-160000000+2400000-19200+64`

`=885842380864`
7. Expand `(0.99)^5` using Binomial theorem method

Solution:
`(0.99)^5`

Using Binomial Theorem,

`(a+b)^n=((n),(0))a^(n)b^(0)+((n),(1))a^(n-1)b^(1)+((n),(2))a^(n-2)b^(2)+...+((n),(n))a^(0)b^(n)`

where `((n),(0))=1,((n),(1))=n,((n),(n))=1,((n),(r))=(n!)/(r!(n-r)!)`

`"Here "a=1,b=-0.01,n=5`

Now, `(1+(-0.01))^5`

`=((5),(0))(1)^5(-0.01)^0+((5),(1))(1)^4(-0.01)^1+((5),(2))(1)^3(-0.01)^2+((5),(3))(1)^2(-0.01)^3+((5),(4))(1)^1(-0.01)^4+((5),(5))(1)^0(-0.01)^5`

`=1(1)^5(-0.01)^0+5(1)^4(-0.01)^1+(5!)/(2!(5-2)!)(1)^3(-0.01)^2+(5!)/(3!(5-3)!)(1)^2(-0.01)^3+(5!)/(4!(5-4)!)(1)^1(-0.01)^4+1(1)^0(-0.01)^5`

`=1(1)(1)+5(1)(-0.01)+(5*4)/(2*1)(1)(0.0001)+(5*4)/(2*1)(1)(-0.000001)+(5)/(1)(1)(0.00000001)+1(1)(-0.0000000001)`

`=1(1)(1)+5(1)(-0.01)+10(1)(0.0001)+10(1)(-0.000001)+5(1)(0.00000001)+1(1)(-0.0000000001)`

`=1-0.05+0.001-0.00001+0.00000005-0.0000000001`

`=0.9509900499`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



7. Expand Perfect Squares of trinomial Examples
(Previous method)
2. Expand nth term using Binomial expansion method Examples
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2026. All rights reserved. Terms, Privacy
 
 

.