Algorithm
Bairstow method-2 Algorithm
|
Step-1:
|
Find coefficient from the equation `a_0x^n + a_1x^(n-1) + a_2x^(n-2) + ... + + a_nx^0`
Let initial approximation be `p_0,q_0`
`b_0 = a_0`;
`c_0 = a_0`;
|
Step-2:
|
`b_i=a_i+p_0*b_(i-1)+q_0*b_(i-2)`
|
Step-3:
|
`c_i=b_i+p_0*c_(i-1)+q_0*c_(i-2)`
|
Step-4:
|
`Delta p=-(b_n*c_(n-3)-b_(n-1)*c_(n-2))/(c_(n-2)^2-c_(n-3)*(c_(n-1)-b_(n-1)))`
`Delta q=-(b_(n-1)*(c_(n-1)-b_(n-1))-b_n*c_(n-2))/(c_(n-2)^2-c_(n-3)*(c_(n-1)-b_(n-1)))`
`p_1=p_0+Delta p`
`q_1=q_0+Delta q`
|
Step-5:
|
if `|p_1-p_0| <= "Accuracy" "and" |q_1-q_0| <= "Accuracy"` then answer are `p_1,q_1` and stop the procedure
else `p_0=p_1,q_0=q_1` and goto step-2
|
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then