Home > Numerical methods calculators > Bairstow method example

Bairstow method example ( Enter your problem )
  1. (Method-1). Algorithm Formula : `b_0=a_0+rb_1+sb_2`
  2. (Method-1). Example-1 `f(x)=x^4-3x^3+3x^2-3x+2` and `r=0.1,s=0.1`
  3. (Method-1). Example-2 `f(x)=x^4-2x^3+6x^2-2x+5` and `r=-1,s=-1`
  4. (Method-2). Algorithm Formula : `b_2=a_2-pb_1-qb_0`
  5. (Method-2). Example-1 `f(x)=x^3+x^2-x+2` and `r=-0.9, s=0.9`
  6. (Method-2). Example-2 `f(x)=x^4+x^3+2x^2+x+1` and `r=0.5, s=0.5`

3. (Method-1). Example-2 `f(x)=x^4-2x^3+6x^2-2x+5` and `r=-1,s=-1`
(Previous example)
5. (Method-2). Example-1 `f(x)=x^3+x^2-x+2` and `r=-0.9, s=0.9`
(Next example)

4. (Method-2). Algorithm Formula : `b_2=a_2-pb_1-qb_0`





Algorithm
Bairstow method-2 Algorithm
Step-1: Find coefficient from the equation `a_0x^n + a_1x^(n-1) + a_2x^(n-2) + ... + + a_nx^0`
Let initial approximation be `p_0,q_0`
`b_0 = a_0`;
`c_0 = a_0`;
Step-2: `b_i=a_i+p_0*b_(i-1)+q_0*b_(i-2)`
Step-3: `c_i=b_i+p_0*c_(i-1)+q_0*c_(i-2)`
Step-4: `Delta p=-(b_n*c_(n-3)-b_(n-1)*c_(n-2))/(c_(n-2)^2-c_(n-3)*(c_(n-1)-b_(n-1)))`
`Delta q=-(b_(n-1)*(c_(n-1)-b_(n-1))-b_n*c_(n-2))/(c_(n-2)^2-c_(n-3)*(c_(n-1)-b_(n-1)))`
`p_1=p_0+Delta p`
`q_1=q_0+Delta q`
Step-5: if `|p_1-p_0| <= "Accuracy" "and" |q_1-q_0| <= "Accuracy"` then answer are `p_1,q_1` and stop the procedure
else `p_0=p_1,q_0=q_1` and goto step-2



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. (Method-1). Example-2 `f(x)=x^4-2x^3+6x^2-2x+5` and `r=-1,s=-1`
(Previous example)
5. (Method-2). Example-1 `f(x)=x^3+x^2-x+2` and `r=-0.9, s=0.9`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.