Home > Numerical methods calculators > Bairstow method example

Bairstow method example ( Enter your problem )
  1. (Method-1). Algorithm Formula : b_0=a_0+rb_1+sb_2
  2. (Method-1). Example-1 f(x)=x^4-3x^3+3x^2-3x+2 and r=0.1,s=0.1
  3. (Method-1). Example-2 f(x)=x^4-2x^3+6x^2-2x+5 and r=-1,s=-1
  4. (Method-2). Algorithm Formula : b_2=a_2-pb_1-qb_0
  5. (Method-2). Example-1 f(x)=x^3+x^2-x+2 and r=-0.9, s=0.9
  6. (Method-2). Example-2 f(x)=x^4+x^3+2x^2+x+1 and r=0.5, s=0.5

3. (Method-1). Example-2 f(x)=x^4-2x^3+6x^2-2x+5 and r=-1,s=-1
(Previous example)
5. (Method-2). Example-1 f(x)=x^3+x^2-x+2 and r=-0.9, s=0.9
(Next example)

4. (Method-2). Algorithm Formula : b_2=a_2-pb_1-qb_0





Algorithm
Bairstow method-2 Algorithm
Step-1: Find coefficient from the equation a_0x^n + a_1x^(n-1) + a_2x^(n-2) + ... + + a_nx^0
Let initial approximation be p_0,q_0
b_0 = a_0;
c_0 = a_0;
Step-2: b_i=a_i+p_0*b_(i-1)+q_0*b_(i-2)
Step-3: c_i=b_i+p_0*c_(i-1)+q_0*c_(i-2)
Step-4: Delta p=-(b_n*c_(n-3)-b_(n-1)*c_(n-2))/(c_(n-2)^2-c_(n-3)*(c_(n-1)-b_(n-1)))
Delta q=-(b_(n-1)*(c_(n-1)-b_(n-1))-b_n*c_(n-2))/(c_(n-2)^2-c_(n-3)*(c_(n-1)-b_(n-1)))
p_1=p_0+Delta p
q_1=q_0+Delta q
Step-5: if |p_1-p_0| <= "Accuracy" "and" |q_1-q_0| <= "Accuracy" then answer are p_1,q_1 and stop the procedure
else p_0=p_1,q_0=q_1 and goto step-2



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. (Method-1). Example-2 f(x)=x^4-2x^3+6x^2-2x+5 and r=-1,s=-1
(Previous example)
5. (Method-2). Example-1 f(x)=x^3+x^2-x+2 and r=-0.9, s=0.9
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.