6. (Method-2). Example-2 `f(x)=x^4+x^3+2x^2+x+1` and `r=0.5, s=0.5`
Find all roots of polynomial using Bairstow method `f(x)=x^4+x^3+2x^2+x+1` and `r=0.5, s=0.5`
Solution: `x^4+x^3+2x^2+x+1=0`
In this problem the coefficients are `a_0=1,a_1=1,a_2=2,a_3=1,a_4=1`
Let the initial approximation `p_0=0.5` and `q_0=0.5`
`1^(st)` iteration :
`-p_0` `-0.5` | `a_0` `1` | `a_1` `1` | `a_2` `2` | `a_3` `1` | `a_4` `1` | `-q_0` `-0.5` | | `-p_0*b_0` `-0.5` | `-p_0*b_1` `-0.25` | `-p_0*b_2` `-0.625` | `-p_0*b_3` `-0.0625` | | | | `-q_0*b_0` `-0.5` | `-q_0*b_1` `-0.25` | `-q_0*b_2` `-0.625` | | `b_0` `1` | `b_1=a_1-p_0*b_0` `0.5` | `b_2=a_2-p_0*b_1-q_0*b_0` `1.25` | `b_3=a_3-p_0*b_2-q_0*b_1` `0.125` | `b_4=a_4-p_0*b_3-q_0*b_2` `0.3125` | | | `-p_0*c_0` `-0.5` | `-p_0*c_1` `0` | `-p_0*c_2` `-0.375` | | | | | `-q_0*c_0` `-0.5` | `-q_0*c_1` `0` | | | `c_0` `1` | `c_1=b_1-p_0*c_0` `0` | `c_2=b_2-p_0*c_1-q_0*c_0` `0.75` | `c_3=b_3-p_0*c_2-q_0*c_1` `-0.25` | |
`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.0938)/(0.5625)=0.1667`
`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.2812)/(0.5625)=0.5`
`p_1=p_0+Delta p=0.5+0.1667=0.6667`
`q_1=q_0+Delta q=0.5+0.5=1`
`2^(nd)` iteration :
`-p_1` `-0.6667` | `a_0` `1` | `a_1` `1` | `a_2` `2` | `a_3` `1` | `a_4` `1` | `-q_1` `-1` | | `-p_1*b_0` `-0.6667` | `-p_1*b_1` `-0.2222` | `-p_1*b_2` `-0.5185` | `-p_1*b_3` `-0.0988` | | | | `-q_1*b_0` `-1` | `-q_1*b_1` `-0.3333` | `-q_1*b_2` `-0.7778` | | `b_0` `1` | `b_1=a_1-p_1*b_0` `0.3333` | `b_2=a_2-p_1*b_1-q_1*b_0` `0.7778` | `b_3=a_3-p_1*b_2-q_1*b_1` `0.1481` | `b_4=a_4-p_1*b_3-q_1*b_2` `0.1235` | | | `-p_1*c_0` `-0.6667` | `-p_1*c_1` `0.2222` | `-p_1*c_2` `0` | | | | | `-q_1*c_0` `-1` | `-q_1*c_1` `0.3333` | | | `c_0` `1` | `c_1=b_1-p_1*c_0` `-0.3333` | `c_2=b_2-p_1*c_1-q_1*c_0` `0` | `c_3=b_3-p_1*c_2-q_1*c_1` `0.4815` | |
`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.0412)/(0.1111)=0.3704`
`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(0.0494)/(0.1111)=-0.4444`
`p_2=p_1+Delta p=0.6667+0.3704=1.037`
`q_2=q_1+Delta q=1-0.4444=0.5556`
`3^(rd)` iteration :
`-p_2` `-1.037` | `a_0` `1` | `a_1` `1` | `a_2` `2` | `a_3` `1` | `a_4` `1` | `-q_2` `-0.5556` | | `-p_2*b_0` `-1.037` | `-p_2*b_1` `0.0384` | `-p_2*b_2` `-1.5378` | `-p_2*b_3` `0.5364` | | | | `-q_2*b_0` `-0.5556` | `-q_2*b_1` `0.0206` | `-q_2*b_2` `-0.8238` | | `b_0` `1` | `b_1=a_1-p_2*b_0` `-0.037` | `b_2=a_2-p_2*b_1-q_2*b_0` `1.4829` | `b_3=a_3-p_2*b_2-q_2*b_1` `-0.5172` | `b_4=a_4-p_2*b_3-q_2*b_2` `0.7125` | | | `-p_2*c_0` `-1.037` | `-p_2*c_1` `1.1139` | `-p_2*c_2` `-2.1168` | | | | | `-q_2*c_0` `-0.5556` | `-q_2*c_1` `0.5967` | | | `c_0` `1` | `c_1=b_1-p_2*c_0` `-1.0741` | `c_2=b_2-p_2*c_1-q_2*c_0` `2.0412` | `c_3=b_3-p_2*c_2-q_2*c_1` `-2.0372` | |
`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(0.2904)/(2.5337)=-0.1146`
`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.6683)/(2.5337)=0.2637`
`p_3=p_2+Delta p=1.037-0.1146=0.9224`
`q_3=q_2+Delta q=0.5556+0.2637=0.8193`
`4^(th)` iteration :
`-p_3` `-0.9224` | `a_0` `1` | `a_1` `1` | `a_2` `2` | `a_3` `1` | `a_4` `1` | `-q_3` `-0.8193` | | `-p_3*b_0` `-0.9224` | `-p_3*b_1` `-0.0715` | `-p_3*b_2` `-1.0231` | `-p_3*b_3` `0.0799` | | | | `-q_3*b_0` `-0.8193` | `-q_3*b_1` `-0.0635` | `-q_3*b_2` `-0.9087` | | `b_0` `1` | `b_1=a_1-p_3*b_0` `0.0776` | `b_2=a_2-p_3*b_1-q_3*b_0` `1.1092` | `b_3=a_3-p_3*b_2-q_3*b_1` `-0.0867` | `b_4=a_4-p_3*b_3-q_3*b_2` `0.1712` | | | `-p_3*c_0` `-0.9224` | `-p_3*c_1` `0.7793` | `-p_3*c_2` `-0.9863` | | | | | `-q_3*c_0` `-0.8193` | `-q_3*c_1` `0.6922` | | | `c_0` `1` | `c_1=b_1-p_3*c_0` `-0.8449` | `c_2=b_2-p_3*c_1-q_3*c_0` `1.0692` | `c_3=b_3-p_3*c_2-q_3*c_1` `-0.3807` | |
`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.052)/(0.8947)=0.0581`
`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.1576)/(0.8947)=0.1761`
`p_4=p_3+Delta p=0.9224+0.0581=0.9805`
`q_4=q_3+Delta q=0.8193+0.1761=0.9954`
`5^(th)` iteration :
`-p_4` `-0.9805` | `a_0` `1` | `a_1` `1` | `a_2` `2` | `a_3` `1` | `a_4` `1` | `-q_4` `-0.9954` | | `-p_4*b_0` `-0.9805` | `-p_4*b_1` `-0.0191` | `-p_4*b_2` `-0.9663` | `-p_4*b_3` `-0.014` | | | | `-q_4*b_0` `-0.9954` | `-q_4*b_1` `-0.0194` | `-q_4*b_2` `-0.981` | | `b_0` `1` | `b_1=a_1-p_4*b_0` `0.0195` | `b_2=a_2-p_4*b_1-q_4*b_0` `0.9855` | `b_3=a_3-p_4*b_2-q_4*b_1` `0.0143` | `b_4=a_4-p_4*b_3-q_4*b_2` `0.005` | | | `-p_4*c_0` `-0.9805` | `-p_4*c_1` `0.9424` | `-p_4*c_2` `-0.9143` | | | | | `-q_4*c_0` `-0.9954` | `-q_4*c_1` `0.9567` | | | `c_0` `1` | `c_1=b_1-p_4*c_0` `-0.9611` | `c_2=b_2-p_4*c_1-q_4*c_0` `0.9325` | `c_3=b_3-p_4*c_2-q_4*c_1` `0.0567` | |
`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.0181)/(0.9102)=0.0199`
`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.004)/(0.9102)=0.0044`
`p_5=p_4+Delta p=0.9805+0.0199=1.0005`
`q_5=q_4+Delta q=0.9954+0.0044=0.9999`
`6^(th)` iteration :
`-p_5` `-1.0005` | `a_0` `1` | `a_1` `1` | `a_2` `2` | `a_3` `1` | `a_4` `1` | `-q_5` `-0.9999` | | `-p_5*b_0` `-1.0005` | `-p_5*b_1` `0.0005` | `-p_5*b_2` `-1.0011` | `-p_5*b_3` `0.0006` | | | | `-q_5*b_0` `-0.9999` | `-q_5*b_1` `0.0005` | `-q_5*b_2` `-1.0005` | | `b_0` `1` | `b_1=a_1-p_5*b_0` `-0.0005` | `b_2=a_2-p_5*b_1-q_5*b_0` `1.0006` | `b_3=a_3-p_5*b_2-q_5*b_1` `-0.0006` | `b_4=a_4-p_5*b_3-q_5*b_2` `0.0001` | | | `-p_5*c_0` `-1.0005` | `-p_5*c_1` `1.0014` | `-p_5*c_2` `-1.0026` | | | | | `-q_5*c_0` `-0.9999` | `-q_5*c_1` `1.0008` | | | `c_0` `1` | `c_1=b_1-p_5*c_0` `-1.0009` | `c_2=b_2-p_5*c_1-q_5*c_0` `1.0021` | `c_3=b_3-p_5*c_2-q_5*c_1` `-0.0024` | |
`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(0.0005)/(1.0025)=-0.0005`
`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.0001)/(1.0025)=0.0001`
`p_6=p_5+Delta p=1.0005=1`
`q_6=q_5+Delta q=0.9999=1`
`7^(th)` iteration :
`-p_6` `-1` | `a_0` `1` | `a_1` `1` | `a_2` `2` | `a_3` `1` | `a_4` `1` | `-q_6` `-1` | | `-p_6*b_0` `-1` | `-p_6*b_1` `0` | `-p_6*b_2` `-1` | `-p_6*b_3` `0` | | | | `-q_6*b_0` `-1` | `-q_6*b_1` `0` | `-q_6*b_2` `-1` | | `b_0` `1` | `b_1=a_1-p_6*b_0` `0` | `b_2=a_2-p_6*b_1-q_6*b_0` `1` | `b_3=a_3-p_6*b_2-q_6*b_1` `0` | `b_4=a_4-p_6*b_3-q_6*b_2` `0` | | | `-p_6*c_0` `-1` | `-p_6*c_1` `1` | `-p_6*c_2` `-1` | | | | | `-q_6*c_0` `-1` | `-q_6*c_1` `1` | | | `c_0` `1` | `c_1=b_1-p_6*c_0` `-1` | `c_2=b_2-p_6*c_1-q_6*c_0` `1` | `c_3=b_3-p_6*c_2-q_6*c_1` `0` | |
`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(0)/(1)=0`
`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(0)/(1)=0`
`p_7=p_6+Delta p=1=1`
`q_7=q_6+Delta q=1=1`
Approximate root `p=1` and `q=1`
Hence extracted quadratic factor `=x^2+px+q=x^2+x+1`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|