Home > Numerical methods calculators > Bairstow method example

Bairstow method example ( Enter your problem )
  1. (Method-1). Algorithm Formula : `b_0=a_0+rb_1+sb_2`
  2. (Method-1). Example-1 `f(x)=x^4-3x^3+3x^2-3x+2` and `r=0.1,s=0.1`
  3. (Method-1). Example-2 `f(x)=x^4-2x^3+6x^2-2x+5` and `r=-1,s=-1`
  4. (Method-2). Algorithm Formula : `b_2=a_2-pb_1-qb_0`
  5. (Method-2). Example-1 `f(x)=x^3+x^2-x+2` and `r=-0.9, s=0.9`
  6. (Method-2). Example-2 `f(x)=x^4+x^3+2x^2+x+1` and `r=0.5, s=0.5`

5. (Method-2). Example-1 `f(x)=x^3+x^2-x+2` and `r=-0.9, s=0.9`
(Previous example)

6. (Method-2). Example-2 `f(x)=x^4+x^3+2x^2+x+1` and `r=0.5, s=0.5`





Find all roots of polynomial using Bairstow method
`f(x)=x^4+x^3+2x^2+x+1` and `r=0.5, s=0.5`


Solution:
`x^4+x^3+2x^2+x+1=0`

In this problem the coefficients are `a_0=1,a_1=1,a_2=2,a_3=1,a_4=1`

Let the initial approximation `p_0=0.5` and `q_0=0.5`


`1^(st)` iteration :

`-p_0`
`-0.5`
`a_0`
`1`
`a_1`
`1`
`a_2`
`2`
`a_3`
`1`
`a_4`
`1`
`-q_0`
`-0.5`
`-p_0*b_0`
`-0.5`
`-p_0*b_1`
`-0.25`
`-p_0*b_2`
`-0.625`
`-p_0*b_3`
`-0.0625`
`-q_0*b_0`
`-0.5`
`-q_0*b_1`
`-0.25`
`-q_0*b_2`
`-0.625`
`b_0`
`1`
`b_1=a_1-p_0*b_0`
`0.5`
`b_2=a_2-p_0*b_1-q_0*b_0`
`1.25`
`b_3=a_3-p_0*b_2-q_0*b_1`
`0.125`
`b_4=a_4-p_0*b_3-q_0*b_2`
`0.3125`
`-p_0*c_0`
`-0.5`
`-p_0*c_1`
`0`
`-p_0*c_2`
`-0.375`
`-q_0*c_0`
`-0.5`
`-q_0*c_1`
`0`
`c_0`
`1`
`c_1=b_1-p_0*c_0`
`0`
`c_2=b_2-p_0*c_1-q_0*c_0`
`0.75`
`c_3=b_3-p_0*c_2-q_0*c_1`
`-0.25`


`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.0938)/(0.5625)=0.1667`

`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.2812)/(0.5625)=0.5`

`p_1=p_0+Delta p=0.5+0.1667=0.6667`

`q_1=q_0+Delta q=0.5+0.5=1`


`2^(nd)` iteration :

`-p_1`
`-0.6667`
`a_0`
`1`
`a_1`
`1`
`a_2`
`2`
`a_3`
`1`
`a_4`
`1`
`-q_1`
`-1`
`-p_1*b_0`
`-0.6667`
`-p_1*b_1`
`-0.2222`
`-p_1*b_2`
`-0.5185`
`-p_1*b_3`
`-0.0988`
`-q_1*b_0`
`-1`
`-q_1*b_1`
`-0.3333`
`-q_1*b_2`
`-0.7778`
`b_0`
`1`
`b_1=a_1-p_1*b_0`
`0.3333`
`b_2=a_2-p_1*b_1-q_1*b_0`
`0.7778`
`b_3=a_3-p_1*b_2-q_1*b_1`
`0.1481`
`b_4=a_4-p_1*b_3-q_1*b_2`
`0.1235`
`-p_1*c_0`
`-0.6667`
`-p_1*c_1`
`0.2222`
`-p_1*c_2`
`0`
`-q_1*c_0`
`-1`
`-q_1*c_1`
`0.3333`
`c_0`
`1`
`c_1=b_1-p_1*c_0`
`-0.3333`
`c_2=b_2-p_1*c_1-q_1*c_0`
`0`
`c_3=b_3-p_1*c_2-q_1*c_1`
`0.4815`


`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.0412)/(0.1111)=0.3704`

`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(0.0494)/(0.1111)=-0.4444`

`p_2=p_1+Delta p=0.6667+0.3704=1.037`

`q_2=q_1+Delta q=1-0.4444=0.5556`


`3^(rd)` iteration :

`-p_2`
`-1.037`
`a_0`
`1`
`a_1`
`1`
`a_2`
`2`
`a_3`
`1`
`a_4`
`1`
`-q_2`
`-0.5556`
`-p_2*b_0`
`-1.037`
`-p_2*b_1`
`0.0384`
`-p_2*b_2`
`-1.5378`
`-p_2*b_3`
`0.5364`
`-q_2*b_0`
`-0.5556`
`-q_2*b_1`
`0.0206`
`-q_2*b_2`
`-0.8238`
`b_0`
`1`
`b_1=a_1-p_2*b_0`
`-0.037`
`b_2=a_2-p_2*b_1-q_2*b_0`
`1.4829`
`b_3=a_3-p_2*b_2-q_2*b_1`
`-0.5172`
`b_4=a_4-p_2*b_3-q_2*b_2`
`0.7125`
`-p_2*c_0`
`-1.037`
`-p_2*c_1`
`1.1139`
`-p_2*c_2`
`-2.1168`
`-q_2*c_0`
`-0.5556`
`-q_2*c_1`
`0.5967`
`c_0`
`1`
`c_1=b_1-p_2*c_0`
`-1.0741`
`c_2=b_2-p_2*c_1-q_2*c_0`
`2.0412`
`c_3=b_3-p_2*c_2-q_2*c_1`
`-2.0372`


`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(0.2904)/(2.5337)=-0.1146`

`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.6683)/(2.5337)=0.2637`

`p_3=p_2+Delta p=1.037-0.1146=0.9224`

`q_3=q_2+Delta q=0.5556+0.2637=0.8193`


`4^(th)` iteration :

`-p_3`
`-0.9224`
`a_0`
`1`
`a_1`
`1`
`a_2`
`2`
`a_3`
`1`
`a_4`
`1`
`-q_3`
`-0.8193`
`-p_3*b_0`
`-0.9224`
`-p_3*b_1`
`-0.0715`
`-p_3*b_2`
`-1.0231`
`-p_3*b_3`
`0.0799`
`-q_3*b_0`
`-0.8193`
`-q_3*b_1`
`-0.0635`
`-q_3*b_2`
`-0.9087`
`b_0`
`1`
`b_1=a_1-p_3*b_0`
`0.0776`
`b_2=a_2-p_3*b_1-q_3*b_0`
`1.1092`
`b_3=a_3-p_3*b_2-q_3*b_1`
`-0.0867`
`b_4=a_4-p_3*b_3-q_3*b_2`
`0.1712`
`-p_3*c_0`
`-0.9224`
`-p_3*c_1`
`0.7793`
`-p_3*c_2`
`-0.9863`
`-q_3*c_0`
`-0.8193`
`-q_3*c_1`
`0.6922`
`c_0`
`1`
`c_1=b_1-p_3*c_0`
`-0.8449`
`c_2=b_2-p_3*c_1-q_3*c_0`
`1.0692`
`c_3=b_3-p_3*c_2-q_3*c_1`
`-0.3807`


`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.052)/(0.8947)=0.0581`

`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.1576)/(0.8947)=0.1761`

`p_4=p_3+Delta p=0.9224+0.0581=0.9805`

`q_4=q_3+Delta q=0.8193+0.1761=0.9954`


`5^(th)` iteration :

`-p_4`
`-0.9805`
`a_0`
`1`
`a_1`
`1`
`a_2`
`2`
`a_3`
`1`
`a_4`
`1`
`-q_4`
`-0.9954`
`-p_4*b_0`
`-0.9805`
`-p_4*b_1`
`-0.0191`
`-p_4*b_2`
`-0.9663`
`-p_4*b_3`
`-0.014`
`-q_4*b_0`
`-0.9954`
`-q_4*b_1`
`-0.0194`
`-q_4*b_2`
`-0.981`
`b_0`
`1`
`b_1=a_1-p_4*b_0`
`0.0195`
`b_2=a_2-p_4*b_1-q_4*b_0`
`0.9855`
`b_3=a_3-p_4*b_2-q_4*b_1`
`0.0143`
`b_4=a_4-p_4*b_3-q_4*b_2`
`0.005`
`-p_4*c_0`
`-0.9805`
`-p_4*c_1`
`0.9424`
`-p_4*c_2`
`-0.9143`
`-q_4*c_0`
`-0.9954`
`-q_4*c_1`
`0.9567`
`c_0`
`1`
`c_1=b_1-p_4*c_0`
`-0.9611`
`c_2=b_2-p_4*c_1-q_4*c_0`
`0.9325`
`c_3=b_3-p_4*c_2-q_4*c_1`
`0.0567`


`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.0181)/(0.9102)=0.0199`

`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.004)/(0.9102)=0.0044`

`p_5=p_4+Delta p=0.9805+0.0199=1.0005`

`q_5=q_4+Delta q=0.9954+0.0044=0.9999`


`6^(th)` iteration :

`-p_5`
`-1.0005`
`a_0`
`1`
`a_1`
`1`
`a_2`
`2`
`a_3`
`1`
`a_4`
`1`
`-q_5`
`-0.9999`
`-p_5*b_0`
`-1.0005`
`-p_5*b_1`
`0.0005`
`-p_5*b_2`
`-1.0011`
`-p_5*b_3`
`0.0006`
`-q_5*b_0`
`-0.9999`
`-q_5*b_1`
`0.0005`
`-q_5*b_2`
`-1.0005`
`b_0`
`1`
`b_1=a_1-p_5*b_0`
`-0.0005`
`b_2=a_2-p_5*b_1-q_5*b_0`
`1.0006`
`b_3=a_3-p_5*b_2-q_5*b_1`
`-0.0006`
`b_4=a_4-p_5*b_3-q_5*b_2`
`0.0001`
`-p_5*c_0`
`-1.0005`
`-p_5*c_1`
`1.0014`
`-p_5*c_2`
`-1.0026`
`-q_5*c_0`
`-0.9999`
`-q_5*c_1`
`1.0008`
`c_0`
`1`
`c_1=b_1-p_5*c_0`
`-1.0009`
`c_2=b_2-p_5*c_1-q_5*c_0`
`1.0021`
`c_3=b_3-p_5*c_2-q_5*c_1`
`-0.0024`


`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(0.0005)/(1.0025)=-0.0005`

`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(-0.0001)/(1.0025)=0.0001`

`p_6=p_5+Delta p=1.0005=1`

`q_6=q_5+Delta q=0.9999=1`


`7^(th)` iteration :

`-p_6`
`-1`
`a_0`
`1`
`a_1`
`1`
`a_2`
`2`
`a_3`
`1`
`a_4`
`1`
`-q_6`
`-1`
`-p_6*b_0`
`-1`
`-p_6*b_1`
`0`
`-p_6*b_2`
`-1`
`-p_6*b_3`
`0`
`-q_6*b_0`
`-1`
`-q_6*b_1`
`0`
`-q_6*b_2`
`-1`
`b_0`
`1`
`b_1=a_1-p_6*b_0`
`0`
`b_2=a_2-p_6*b_1-q_6*b_0`
`1`
`b_3=a_3-p_6*b_2-q_6*b_1`
`0`
`b_4=a_4-p_6*b_3-q_6*b_2`
`0`
`-p_6*c_0`
`-1`
`-p_6*c_1`
`1`
`-p_6*c_2`
`-1`
`-q_6*c_0`
`-1`
`-q_6*c_1`
`1`
`c_0`
`1`
`c_1=b_1-p_6*c_0`
`-1`
`c_2=b_2-p_6*c_1-q_6*c_0`
`1`
`c_3=b_3-p_6*c_2-q_6*c_1`
`0`


`Delta p=-(b_4*c_1-b_3*c_2)/(c_2^2-c_1*(c_3-b_3))=-(0)/(1)=0`

`Delta q=-(b_3*(c_3-b_3)-b_4*c_2)/(c_2^2-c_1*(c_3-b_3))=-(0)/(1)=0`

`p_7=p_6+Delta p=1=1`

`q_7=q_6+Delta q=1=1`

Approximate root `p=1` and `q=1`

Hence extracted quadratic factor `=x^2+px+q=x^2+x+1`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. (Method-2). Example-1 `f(x)=x^3+x^2-x+2` and `r=-0.9, s=0.9`
(Previous example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.