Home > Numerical methods calculators > Birge-Vieta method example

Birge-Vieta method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x^2-x+1` and `p0=0.5`
  2. Example-2 `f(x)=x^4-3x^3+3x^2-3x+2` and `p0=0.5`
  3. Example-3 `f(x)=9x^4+12x^3+13x^2+12x+4` and `p0=-0.5`

2. Example-2 `f(x)=x^4-3x^3+3x^2-3x+2` and `p0=0.5`
(Next example)

1. Algorithm & Example-1 `f(x)=x^3-x^2-x+1` and `p0=0.5`





Algorithm
Birge-Vieta method Steps (Rule)
Step-1: Find coefficient from the equation `a_0x^n + a_1x^(n-1) + a_2x^(n-2) + ... + + a_nx^0`
Let initial approximation be `p_0`
`b_0 = a_0`;
`c_0 = a_0`;
Step-2: `b_i=a_i+p_0*b_(i-1)`
Step-3: `c_i=b_i+p_0*c_(i-1)`
Step-4: `p_1=p_0-b_n/c_(n-1)`
Step-5: if `|p_1-p_0| <= "Accuracy"` then answer is `p_1` and stop the procedure
else `p_0=p_1` and goto step-2

Example-1
1. Find a root of polynomial using Birge-Vieta method
f(x) = x^3-x^2-x+1 and p0 = 0.5


Solution:
`x^3-x^2-x+1=0`

In this problem the coefficients are `a_0=1,a_1=-1,a_2=-1,a_3=1`

Let the initial approximation to p be `p_0=0.5`

`1^(st)` Iteration

 `p_0`
`0.5`
 `p_0=0.5`
 `a_0`
`1`
 `a_0=1`
 `a_1`
`-1`
 `a_1=-1`
 `a_2`
`-1`
 `a_2=-1`
 `a_3`
`1`
 `a_3=1`
 `p_0*b_0`
`0.5`
 `0.5=0.5*1`
`p_0*b_0`
 `p_0*b_1`
`-0.25`
 `-0.25=0.5*-0.5`
`p_0*b_1`
 `p_0*b_2`
`-0.62`
 `-0.62=0.5*-1.25`
`p_0*b_2`
 `b_0`
`1`
 `b_0=1`
 `b_1=a_1+p_0*b_0`
`-0.5`
 `-0.5=-1+0.5`
`b_1=a_1+p_0*b_0`
 `b_2=a_2+p_0*b_1`
`-1.25`
 `-1.25=-1-0.25`
`b_2=a_2+p_0*b_1`
 `b_3=a_3+p_0*b_2`
`0.38`
 `0.38=1-0.62`
`b_3=a_3+p_0*b_2`
 `p_0*c_0`
`0.5`
 `0.5=0.5*1`
`p_0*c_0`
 `p_0*c_1`
`0`
 `0=0.5*0`
`p_0*c_1`
 `c_0`
`1`
 `c_0=1`
 `c_1=b_1+p_0*c_0`
`0`
 `0=-0.5+0.5`
`c_1=b_1+p_0*c_0`
 `c_2=b_2+p_0*c_1`
`-1.25`
 `-1.25=-1.25`
`c_2=b_2+p_0*c_1`


`p_1=p_0-b_3/c_2=0.5-(0.38)/(-1.25)=0.8`

`2^(nd)` Iteration

 `p_1`
`0.8`
 `p_1=0.8`
 `a_0`
`1`
 `a_0=1`
 `a_1`
`-1`
 `a_1=-1`
 `a_2`
`-1`
 `a_2=-1`
 `a_3`
`1`
 `a_3=1`
 `p_1*b_0`
`0.8`
 `0.8=0.8*1`
`p_1*b_0`
 `p_1*b_1`
`-0.16`
 `-0.16=0.8*-0.2`
`p_1*b_1`
 `p_1*b_2`
`-0.93`
 `-0.93=0.8*-1.16`
`p_1*b_2`
 `b_0`
`1`
 `b_0=1`
 `b_1=a_1+p_1*b_0`
`-0.2`
 `-0.2=-1+0.8`
`b_1=a_1+p_1*b_0`
 `b_2=a_2+p_1*b_1`
`-1.16`
 `-1.16=-1-0.16`
`b_2=a_2+p_1*b_1`
 `b_3=a_3+p_1*b_2`
`0.07`
 `0.07=1-0.93`
`b_3=a_3+p_1*b_2`
 `p_1*c_0`
`0.8`
 `0.8=0.8*1`
`p_1*c_0`
 `p_1*c_1`
`0.48`
 `0.48=0.8*0.6`
`p_1*c_1`
 `c_0`
`1`
 `c_0=1`
 `c_1=b_1+p_1*c_0`
`0.6`
 `0.6=-0.2+0.8`
`c_1=b_1+p_1*c_0`
 `c_2=b_2+p_1*c_1`
`-0.68`
 `-0.68=-1.16+0.48`
`c_2=b_2+p_1*c_1`


`p_2=p_1-b_3/c_2=0.8-(0.07)/(-0.68)=0.91`

`3^(rd)` Iteration

 `p_2`
`0.91`
 `p_2=0.91`
 `a_0`
`1`
 `a_0=1`
 `a_1`
`-1`
 `a_1=-1`
 `a_2`
`-1`
 `a_2=-1`
 `a_3`
`1`
 `a_3=1`
 `p_2*b_0`
`0.91`
 `0.91=0.91*1`
`p_2*b_0`
 `p_2*b_1`
`-0.09`
 `-0.09=0.91*-0.09`
`p_2*b_1`
 `p_2*b_2`
`-0.98`
 `-0.98=0.91*-1.09`
`p_2*b_2`
 `b_0`
`1`
 `b_0=1`
 `b_1=a_1+p_2*b_0`
`-0.09`
 `-0.09=-1+0.91`
`b_1=a_1+p_2*b_0`
 `b_2=a_2+p_2*b_1`
`-1.09`
 `-1.09=-1-0.09`
`b_2=a_2+p_2*b_1`
 `b_3=a_3+p_2*b_2`
`0.02`
 `0.02=1-0.98`
`b_3=a_3+p_2*b_2`
 `p_2*c_0`
`0.91`
 `0.91=0.91*1`
`p_2*c_0`
 `p_2*c_1`
`0.74`
 `0.74=0.91*0.81`
`p_2*c_1`
 `c_0`
`1`
 `c_0=1`
 `c_1=b_1+p_2*c_0`
`0.81`
 `0.81=-0.09+0.91`
`c_1=b_1+p_2*c_0`
 `c_2=b_2+p_2*c_1`
`-0.35`
 `-0.35=-1.09+0.74`
`c_2=b_2+p_2*c_1`


`p_3=p_2-b_3/c_2=0.91-(0.02)/(-0.35)=0.95`

Approximate root = 0.95


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2 `f(x)=x^4-3x^3+3x^2-3x+2` and `p0=0.5`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.