Home > Numerical methods calculators > Birge-Vieta method example

Birge-Vieta method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x^2-x+1` and `p0=0.5`
  2. Example-2 `f(x)=x^4-3x^3+3x^2-3x+2` and `p0=0.5`
  3. Example-3 `f(x)=9x^4+12x^3+13x^2+12x+4` and `p0=-0.5`

1. Algorithm & Example-1 `f(x)=x^3-x^2-x+1` and `p0=0.5`
(Previous example)
3. Example-3 `f(x)=9x^4+12x^3+13x^2+12x+4` and `p0=-0.5`
(Next example)

2. Example-2 `f(x)=x^4-3x^3+3x^2-3x+2` and `p0=0.5`





Find a root of polynomial using Birge-Vieta method
f(x) = x^4-3x^3+3x^2-3x+2 and p0 = 0.5


Solution:
`x^4-3x^3+3x^2-3x+2=0`

In this problem the coefficients are `a_0=1,a_1=-3,a_2=3,a_3=-3,a_4=2`

Let the initial approximation to p be `p_0=0.5`

`1^(st)` Iteration

 `p_0`
`0.5`
 `p_0=0.5`
 `a_0`
`1`
 `a_0=1`
 `a_1`
`-3`
 `a_1=-3`
 `a_2`
`3`
 `a_2=3`
 `a_3`
`-3`
 `a_3=-3`
 `a_4`
`2`
 `a_4=2`
 `p_0*b_0`
`0.5`
 `0.5=0.5*1`
`p_0*b_0`
 `p_0*b_1`
`-1.25`
 `-1.25=0.5*-2.5`
`p_0*b_1`
 `p_0*b_2`
`0.88`
 `0.88=0.5*1.75`
`p_0*b_2`
 `p_0*b_3`
`-1.06`
 `-1.06=0.5*-2.12`
`p_0*b_3`
 `b_0`
`1`
 `b_0=1`
 `b_1=a_1+p_0*b_0`
`-2.5`
 `-2.5=-3+0.5`
`b_1=a_1+p_0*b_0`
 `b_2=a_2+p_0*b_1`
`1.75`
 `1.75=3-1.25`
`b_2=a_2+p_0*b_1`
 `b_3=a_3+p_0*b_2`
`-2.12`
 `-2.12=-3+0.88`
`b_3=a_3+p_0*b_2`
 `b_4=a_4+p_0*b_3`
`0.94`
 `0.94=2-1.06`
`b_4=a_4+p_0*b_3`
 `p_0*c_0`
`0.5`
 `0.5=0.5*1`
`p_0*c_0`
 `p_0*c_1`
`-1`
 `-1=0.5*-2`
`p_0*c_1`
 `p_0*c_2`
`0.38`
 `0.38=0.5*0.75`
`p_0*c_2`
 `c_0`
`1`
 `c_0=1`
 `c_1=b_1+p_0*c_0`
`-2`
 `-2=-2.5+0.5`
`c_1=b_1+p_0*c_0`
 `c_2=b_2+p_0*c_1`
`0.75`
 `0.75=1.75-1`
`c_2=b_2+p_0*c_1`
 `c_3=b_3+p_0*c_2`
`-1.75`
 `-1.75=-2.12+0.38`
`c_3=b_3+p_0*c_2`


`p_1=p_0-b_4/c_3=0.5-(0.94)/(-1.75)=1.04`

`2^(nd)` Iteration

 `p_1`
`1.04`
 `p_1=1.04`
 `a_0`
`1`
 `a_0=1`
 `a_1`
`-3`
 `a_1=-3`
 `a_2`
`3`
 `a_2=3`
 `a_3`
`-3`
 `a_3=-3`
 `a_4`
`2`
 `a_4=2`
 `p_1*b_0`
`1.04`
 `1.04=1.04*1`
`p_1*b_0`
 `p_1*b_1`
`-2.03`
 `-2.03=1.04*-1.96`
`p_1*b_1`
 `p_1*b_2`
`1`
 `1=1.04*0.97`
`p_1*b_2`
 `p_1*b_3`
`-2.07`
 `-2.07=1.04*-2`
`p_1*b_3`
 `b_0`
`1`
 `b_0=1`
 `b_1=a_1+p_1*b_0`
`-1.96`
 `-1.96=-3+1.04`
`b_1=a_1+p_1*b_0`
 `b_2=a_2+p_1*b_1`
`0.97`
 `0.97=3-2.03`
`b_2=a_2+p_1*b_1`
 `b_3=a_3+p_1*b_2`
`-2`
 `-2=-3+1`
`b_3=a_3+p_1*b_2`
 `b_4=a_4+p_1*b_3`
`-0.07`
 `-0.07=2-2.07`
`b_4=a_4+p_1*b_3`
 `p_1*c_0`
`1.04`
 `1.04=1.04*1`
`p_1*c_0`
 `p_1*c_1`
`-0.96`
 `-0.96=1.04*-0.93`
`p_1*c_1`
 `p_1*c_2`
`0`
 `0=1.04*0`
`p_1*c_2`
 `c_0`
`1`
 `c_0=1`
 `c_1=b_1+p_1*c_0`
`-0.93`
 `-0.93=-1.96+1.04`
`c_1=b_1+p_1*c_0`
 `c_2=b_2+p_1*c_1`
`0`
 `0=0.97-0.96`
`c_2=b_2+p_1*c_1`
 `c_3=b_3+p_1*c_2`
`-2`
 `-2=-2+0`
`c_3=b_3+p_1*c_2`


`p_2=p_1-b_4/c_3=1.04-(-0.07)/(-2)=1`

`3^(rd)` Iteration

 `p_2`
`1`
 `p_2=1`
 `a_0`
`1`
 `a_0=1`
 `a_1`
`-3`
 `a_1=-3`
 `a_2`
`3`
 `a_2=3`
 `a_3`
`-3`
 `a_3=-3`
 `a_4`
`2`
 `a_4=2`
 `p_2*b_0`
`1`
 `1=1*1`
`p_2*b_0`
 `p_2*b_1`
`-2`
 `-2=1*-2`
`p_2*b_1`
 `p_2*b_2`
`1`
 `1=1*1`
`p_2*b_2`
 `p_2*b_3`
`-2`
 `-2=1*-2`
`p_2*b_3`
 `b_0`
`1`
 `b_0=1`
 `b_1=a_1+p_2*b_0`
`-2`
 `-2=-3+1`
`b_1=a_1+p_2*b_0`
 `b_2=a_2+p_2*b_1`
`1`
 `1=3-2`
`b_2=a_2+p_2*b_1`
 `b_3=a_3+p_2*b_2`
`-2`
 `-2=-3+1`
`b_3=a_3+p_2*b_2`
 `b_4=a_4+p_2*b_3`
`0`
 `0=2-2`
`b_4=a_4+p_2*b_3`
 `p_2*c_0`
`1`
 `1=1*1`
`p_2*c_0`
 `p_2*c_1`
`-1`
 `-1=1*-1`
`p_2*c_1`
 `p_2*c_2`
`0`
 `0=1*0`
`p_2*c_2`
 `c_0`
`1`
 `c_0=1`
 `c_1=b_1+p_2*c_0`
`-1`
 `-1=-2+1`
`c_1=b_1+p_2*c_0`
 `c_2=b_2+p_2*c_1`
`0`
 `0=1-1`
`c_2=b_2+p_2*c_1`
 `c_3=b_3+p_2*c_2`
`-2`
 `-2=-2+0`
`c_3=b_3+p_2*c_2`


`p_3=p_2-b_4/c_3=1-(0)/(-2)=1`

Approximate root = 1


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Algorithm & Example-1 `f(x)=x^3-x^2-x+1` and `p0=0.5`
(Previous example)
3. Example-3 `f(x)=9x^4+12x^3+13x^2+12x+4` and `p0=-0.5`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.