Home > Numerical methods calculators > Birge-Vieta method example

Birge-Vieta method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x^2-x+1` and `p0=0.5`
  2. Example-2 `f(x)=x^4-3x^3+3x^2-3x+2` and `p0=0.5`
  3. Example-3 `f(x)=9x^4+12x^3+13x^2+12x+4` and `p0=-0.5`

2. Example-2 `f(x)=x^4-3x^3+3x^2-3x+2` and `p0=0.5`
(Previous example)

3. Example-3 `f(x)=9x^4+12x^3+13x^2+12x+4` and `p0=-0.5`





Find a root of polynomial using Birge-Vieta method
`f(x)=9x^4+12x^3+13x^2+12x+4` and `p0=-0.5`


Solution:
`9x^4+12x^3+13x^2+12x+4=0`

In this problem the coefficients are `a_0=9,a_1=12,a_2=13,a_3=12,a_4=4`

Let the initial approximation to p be `p_0=-0.5`


`1^(st)` iteration :

`p_0`
`-0.5`
`a_0`
`9`
`a_1`
`12`
`a_2`
`13`
`a_3`
`12`
`a_4`
`4`
`p_0*b_0`
`-4.5`
`p_0*b_1`
`-3.75`
`p_0*b_2`
`-4.625`
`p_0*b_3`
`-3.6875`
`b_0`
`9`
`b_1=a_1+p_0*b_0`
`7.5`
`b_2=a_2+p_0*b_1`
`9.25`
`b_3=a_3+p_0*b_2`
`7.375`
`b_4=a_4+p_0*b_3`
`0.3125`
`p_0*c_0`
`-4.5`
`p_0*c_1`
`-1.5`
`p_0*c_2`
`-3.875`
`c_0`
`9`
`c_1=b_1+p_0*c_0`
`3`
`c_2=b_2+p_0*c_1`
`7.75`
`c_3=b_3+p_0*c_2`
`3.5`


`p_1=p_0-b_4/c_3=-0.5-(0.3125)/(3.5)=-0.5893`


`2^(nd)` iteration :

`p_1`
`-0.5893`
`a_0`
`9`
`a_1`
`12`
`a_2`
`13`
`a_3`
`12`
`a_4`
`4`
`p_1*b_0`
`-5.3036`
`p_1*b_1`
`-3.9461`
`p_1*b_2`
`-5.3353`
`p_1*b_3`
`-3.9274`
`b_0`
`9`
`b_1=a_1+p_1*b_0`
`6.6964`
`b_2=a_2+p_1*b_1`
`9.0539`
`b_3=a_3+p_1*b_2`
`6.6647`
`b_4=a_4+p_1*b_3`
`0.0726`
`p_1*c_0`
`-5.3036`
`p_1*c_1`
`-0.8208`
`p_1*c_2`
`-4.8516`
`c_0`
`9`
`c_1=b_1+p_1*c_0`
`1.3929`
`c_2=b_2+p_1*c_1`
`8.2331`
`c_3=b_3+p_1*c_2`
`1.813`


`p_2=p_1-b_4/c_3=-0.5893-(0.0726)/(1.813)=-0.6293`


`3^(rd)` iteration :

`p_2`
`-0.6293`
`a_0`
`9`
`a_1`
`12`
`a_2`
`13`
`a_3`
`12`
`a_4`
`4`
`p_2*b_0`
`-5.664`
`p_2*b_1`
`-3.9875`
`p_2*b_2`
`-5.6719`
`p_2*b_3`
`-3.9825`
`b_0`
`9`
`b_1=a_1+p_2*b_0`
`6.336`
`b_2=a_2+p_2*b_1`
`9.0125`
`b_3=a_3+p_2*b_2`
`6.3281`
`b_4=a_4+p_2*b_3`
`0.0175`
`p_2*c_0`
`-5.664`
`p_2*c_1`
`-0.4229`
`p_2*c_2`
`-5.4057`
`c_0`
`9`
`c_1=b_1+p_2*c_0`
`0.672`
`c_2=b_2+p_2*c_1`
`8.5896`
`c_3=b_3+p_2*c_2`
`0.9224`


`p_3=p_2-b_4/c_3=-0.6293-(0.0175)/(0.9224)=-0.6483`


`4^(th)` iteration :

`p_3`
`-0.6483`
`a_0`
`9`
`a_1`
`12`
`a_2`
`13`
`a_3`
`12`
`a_4`
`4`
`p_3*b_0`
`-5.8349`
`p_3*b_1`
`-3.997`
`p_3*b_2`
`-5.8368`
`p_3*b_3`
`-3.9957`
`b_0`
`9`
`b_1=a_1+p_3*b_0`
`6.1651`
`b_2=a_2+p_3*b_1`
`9.003`
`b_3=a_3+p_3*b_2`
`6.1632`
`b_4=a_4+p_3*b_3`
`0.0043`
`p_3*c_0`
`-5.8349`
`p_3*c_1`
`-0.2141`
`p_3*c_2`
`-5.698`
`c_0`
`9`
`c_1=b_1+p_3*c_0`
`0.3303`
`c_2=b_2+p_3*c_1`
`8.7889`
`c_3=b_3+p_3*c_2`
`0.4652`


`p_4=p_3-b_4/c_3=-0.6483-(0.0043)/(0.4652)=-0.6576`


`5^(th)` iteration :

`p_4`
`-0.6576`
`a_0`
`9`
`a_1`
`12`
`a_2`
`13`
`a_3`
`12`
`a_4`
`4`
`p_4*b_0`
`-5.9181`
`p_4*b_1`
`-3.9993`
`p_4*b_2`
`-5.9186`
`p_4*b_3`
`-3.9989`
`b_0`
`9`
`b_1=a_1+p_4*b_0`
`6.0819`
`b_2=a_2+p_4*b_1`
`9.0007`
`b_3=a_3+p_4*b_2`
`6.0814`
`b_4=a_4+p_4*b_3`
`0.0011`
`p_4*c_0`
`-5.9181`
`p_4*c_1`
`-0.1077`
`p_4*c_2`
`-5.8478`
`c_0`
`9`
`c_1=b_1+p_4*c_0`
`0.1637`
`c_2=b_2+p_4*c_1`
`8.8931`
`c_3=b_3+p_4*c_2`
`0.2336`


`p_5=p_4-b_4/c_3=-0.6576-(0.0011)/(0.2336)=-0.6621`


`6^(th)` iteration :

`p_5`
`-0.6621`
`a_0`
`9`
`a_1`
`12`
`a_2`
`13`
`a_3`
`12`
`a_4`
`4`
`p_5*b_0`
`-5.9592`
`p_5*b_1`
`-3.9998`
`p_5*b_2`
`-5.9594`
`p_5*b_3`
`-3.9997`
`b_0`
`9`
`b_1=a_1+p_5*b_0`
`6.0408`
`b_2=a_2+p_5*b_1`
`9.0002`
`b_3=a_3+p_5*b_2`
`6.0406`
`b_4=a_4+p_5*b_3`
`0.0003`
`p_5*c_0`
`-5.9592`
`p_5*c_1`
`-0.054`
`p_5*c_2`
`-5.9236`
`c_0`
`9`
`c_1=b_1+p_5*c_0`
`0.0815`
`c_2=b_2+p_5*c_1`
`8.9462`
`c_3=b_3+p_5*c_2`
`0.117`


`p_6=p_5-b_4/c_3=-0.6621-(0.0003)/(0.117)=-0.6644`


`7^(th)` iteration :

`p_6`
`-0.6644`
`a_0`
`9`
`a_1`
`12`
`a_2`
`13`
`a_3`
`12`
`a_4`
`4`
`p_6*b_0`
`-5.9797`
`p_6*b_1`
`-4`
`p_6*b_2`
`-5.9797`
`p_6*b_3`
`-3.9999`
`b_0`
`9`
`b_1=a_1+p_6*b_0`
`6.0203`
`b_2=a_2+p_6*b_1`
`9`
`b_3=a_3+p_6*b_2`
`6.0203`
`b_4=a_4+p_6*b_3`
`0.0001`
`p_6*c_0`
`-5.9797`
`p_6*c_1`
`-0.027`
`p_6*c_2`
`-5.9617`
`c_0`
`9`
`c_1=b_1+p_6*c_0`
`0.0407`
`c_2=b_2+p_6*c_1`
`8.973`
`c_3=b_3+p_6*c_2`
`0.0586`


`p_7=p_6-b_4/c_3=-0.6644-(0.0001)/(0.0586)=-0.6655`


`8^(th)` iteration :

`p_7`
`-0.6655`
`a_0`
`9`
`a_1`
`12`
`a_2`
`13`
`a_3`
`12`
`a_4`
`4`
`p_7*b_0`
`-5.9898`
`p_7*b_1`
`-4`
`p_7*b_2`
`-5.9898`
`p_7*b_3`
`-4`
`b_0`
`9`
`b_1=a_1+p_7*b_0`
`6.0102`
`b_2=a_2+p_7*b_1`
`9`
`b_3=a_3+p_7*b_2`
`6.0102`
`b_4=a_4+p_7*b_3`
`0`
`p_7*c_0`
`-5.9898`
`p_7*c_1`
`-0.0135`
`p_7*c_2`
`-5.9808`
`c_0`
`9`
`c_1=b_1+p_7*c_0`
`0.0203`
`c_2=b_2+p_7*c_1`
`8.9865`
`c_3=b_3+p_7*c_2`
`0.0293`


`p_8=p_7-b_4/c_3=-0.6655-(0)/(0.0293)=-0.6661`


`9^(th)` iteration :

`p_8`
`-0.6661`
`a_0`
`9`
`a_1`
`12`
`a_2`
`13`
`a_3`
`12`
`a_4`
`4`
`p_8*b_0`
`-5.9949`
`p_8*b_1`
`-4`
`p_8*b_2`
`-5.9949`
`p_8*b_3`
`-4`
`b_0`
`9`
`b_1=a_1+p_8*b_0`
`6.0051`
`b_2=a_2+p_8*b_1`
`9`
`b_3=a_3+p_8*b_2`
`6.0051`
`b_4=a_4+p_8*b_3`
`0`
`p_8*c_0`
`-5.9949`
`p_8*c_1`
`-0.0068`
`p_8*c_2`
`-5.9904`
`c_0`
`9`
`c_1=b_1+p_8*c_0`
`0.0102`
`c_2=b_2+p_8*c_1`
`8.9932`
`c_3=b_3+p_8*c_2`
`0.0147`


`p_9=p_8-b_4/c_3=-0.6661-(0)/(0.0147)=-0.6664`


`10^(th)` iteration :

`p_9`
`-0.6664`
`a_0`
`9`
`a_1`
`12`
`a_2`
`13`
`a_3`
`12`
`a_4`
`4`
`p_9*b_0`
`-5.9975`
`p_9*b_1`
`-4`
`p_9*b_2`
`-5.9975`
`p_9*b_3`
`-4`
`b_0`
`9`
`b_1=a_1+p_9*b_0`
`6.0025`
`b_2=a_2+p_9*b_1`
`9`
`b_3=a_3+p_9*b_2`
`6.0025`
`b_4=a_4+p_9*b_3`
`0`
`p_9*c_0`
`-5.9975`
`p_9*c_1`
`-0.0034`
`p_9*c_2`
`-5.9952`
`c_0`
`9`
`c_1=b_1+p_9*c_0`
`0.0051`
`c_2=b_2+p_9*c_1`
`8.9966`
`c_3=b_3+p_9*c_2`
`0.0073`


`p_10=p_9-b_4/c_3=-0.6664-(0)/(0.0073)=-0.6665`


`11^(th)` iteration :

`p_10`
`-0.6665`
`a_0`
`9`
`a_1`
`12`
`a_2`
`13`
`a_3`
`12`
`a_4`
`4`
`p_10*b_0`
`-5.9987`
`p_10*b_1`
`-4`
`p_10*b_2`
`-5.9987`
`p_10*b_3`
`-4`
`b_0`
`9`
`b_1=a_1+p_10*b_0`
`6.0013`
`b_2=a_2+p_10*b_1`
`9`
`b_3=a_3+p_10*b_2`
`6.0013`
`b_4=a_4+p_10*b_3`
`0`
`p_10*c_0`
`-5.9987`
`p_10*c_1`
`-0.0017`
`p_10*c_2`
`-5.9976`
`c_0`
`9`
`c_1=b_1+p_10*c_0`
`0.0025`
`c_2=b_2+p_10*c_1`
`8.9983`
`c_3=b_3+p_10*c_2`
`0.0037`


`p_11=p_10-b_4/c_3=-0.6665-(0)/(0.0037)=-0.6666`

Approximate root = -0.6666


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2 `f(x)=x^4-3x^3+3x^2-3x+2` and `p0=0.5`
(Previous example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.