Home > Numerical methods calculators > False Position method example

2. False Position method (regula falsi method) example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `x=sqrt(12)`
  4. Example-4 `x=root(3)(48)`
  5. Example-5 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

4. Example-4 `x=root(3)(48)`
(Previous example)
3. Newton Raphson method
(Next method)

5. Example-5 `f(x)=x^3+2x^2+x-1`





Find a root of an equation `f(x)=x^3+2x^2+x-1` using False Position method (regula falsi method)

Solution:
Here `x^3+2x^2+x-1=0`

Let `f(x) = x^3+2x^2+x-1`

Here
`x`01
`f(x)`-13



`1^(st)` iteration :

Here `f(0) = -1 < 0` and `f(1) = 3 > 0`

`:.` Now, Root lies between `x_0 = 0` and `x_1 = 1`

`x_2 = x_0 - f(x_0) * (x_1 - x_0)/(f(x_1) - f(x_0))`

`x_2=0 - (-1) * (1 - 0)/(3 - (-1))`

`x_2=0.25`

`f(x_2)=f(0.25)=0.25^3+2*0.25^2+0.25-1=-0.6094 < 0`


`2^(nd)` iteration :

Here `f(0.25) = -0.6094 < 0` and `f(1) = 3 > 0`

`:.` Now, Root lies between `x_0 = 0.25` and `x_1 = 1`

`x_3 = x_0 - f(x_0) * (x_1 - x_0)/(f(x_1) - f(x_0))`

`x_3=0.25 - (-0.6094) * (1 - 0.25)/(3 - (-0.6094))`

`x_3=0.3766`

`f(x_3)=f(0.3766)=0.3766^3+2*0.3766^2+0.3766-1=-0.2863 < 0`


`3^(rd)` iteration :

Here `f(0.3766) = -0.2863 < 0` and `f(1) = 3 > 0`

`:.` Now, Root lies between `x_0 = 0.3766` and `x_1 = 1`

`x_4 = x_0 - f(x_0) * (x_1 - x_0)/(f(x_1) - f(x_0))`

`x_4=0.3766 - (-0.2863) * (1 - 0.3766)/(3 - (-0.2863))`

`x_4=0.4309`

`f(x_4)=f(0.4309)=0.4309^3+2*0.4309^2+0.4309-1=-0.1177 < 0`


`4^(th)` iteration :

Here `f(0.4309) = -0.1177 < 0` and `f(1) = 3 > 0`

`:.` Now, Root lies between `x_0 = 0.4309` and `x_1 = 1`

`x_5 = x_0 - f(x_0) * (x_1 - x_0)/(f(x_1) - f(x_0))`

`x_5=0.4309 - (-0.1177) * (1 - 0.4309)/(3 - (-0.1177))`

`x_5=0.4524`

`f(x_5)=f(0.4524)=0.4524^3+2*0.4524^2+0.4524-1=-0.0457 < 0`


`5^(th)` iteration :

Here `f(0.4524) = -0.0457 < 0` and `f(1) = 3 > 0`

`:.` Now, Root lies between `x_0 = 0.4524` and `x_1 = 1`

`x_6 = x_0 - f(x_0) * (x_1 - x_0)/(f(x_1) - f(x_0))`

`x_6=0.4524 - (-0.0457) * (1 - 0.4524)/(3 - (-0.0457))`

`x_6=0.4606`

`f(x_6)=f(0.4606)=0.4606^3+2*0.4606^2+0.4606-1=-0.0173 < 0`


`6^(th)` iteration :

Here `f(0.4606) = -0.0173 < 0` and `f(1) = 3 > 0`

`:.` Now, Root lies between `x_0 = 0.4606` and `x_1 = 1`

`x_7 = x_0 - f(x_0) * (x_1 - x_0)/(f(x_1) - f(x_0))`

`x_7=0.4606 - (-0.0173) * (1 - 0.4606)/(3 - (-0.0173))`

`x_7=0.4637`

`f(x_7)=f(0.4637)=0.4637^3+2*0.4637^2+0.4637-1=-0.0065 < 0`


`7^(th)` iteration :

Here `f(0.4637) = -0.0065 < 0` and `f(1) = 3 > 0`

`:.` Now, Root lies between `x_0 = 0.4637` and `x_1 = 1`

`x_8 = x_0 - f(x_0) * (x_1 - x_0)/(f(x_1) - f(x_0))`

`x_8=0.4637 - (-0.0065) * (1 - 0.4637)/(3 - (-0.0065))`

`x_8=0.4649`

`f(x_8)=f(0.4649)=0.4649^3+2*0.4649^2+0.4649-1=-0.0024 < 0`


`8^(th)` iteration :

Here `f(0.4649) = -0.0024 < 0` and `f(1) = 3 > 0`

`:.` Now, Root lies between `x_0 = 0.4649` and `x_1 = 1`

`x_9 = x_0 - f(x_0) * (x_1 - x_0)/(f(x_1) - f(x_0))`

`x_9=0.4649 - (-0.0024) * (1 - 0.4649)/(3 - (-0.0024))`

`x_9=0.4653`

`f(x_9)=f(0.4653)=0.4653^3+2*0.4653^2+0.4653-1=-0.0009 < 0`


`9^(th)` iteration :

Here `f(0.4653) = -0.0009 < 0` and `f(1) = 3 > 0`

`:.` Now, Root lies between `x_0 = 0.4653` and `x_1 = 1`

`x_10 = x_0 - f(x_0) * (x_1 - x_0)/(f(x_1) - f(x_0))`

`x_10=0.4653 - (-0.0009) * (1 - 0.4653)/(3 - (-0.0009))`

`x_10=0.4655`

`f(x_10)=f(0.4655)=0.4655^3+2*0.4655^2+0.4655-1=-0.0003 < 0`


Approximate root of the equation `x^3+2x^2+x-1=0` using False Position method is `0.4655` (After 9 iterations)

`n``x_0``f(x_0)``x_1``f(x_1)``x_2``f(x_2)`Update
10-1130.25-0.6094`x_0 = x_2`
20.25-0.6094130.3766-0.2863`x_0 = x_2`
30.3766-0.2863130.4309-0.1177`x_0 = x_2`
40.4309-0.1177130.4524-0.0457`x_0 = x_2`
50.4524-0.0457130.4606-0.0173`x_0 = x_2`
60.4606-0.0173130.4637-0.0065`x_0 = x_2`
70.4637-0.0065130.4649-0.0024`x_0 = x_2`
80.4649-0.0024130.4653-0.0009`x_0 = x_2`
90.4653-0.0009130.4655-0.0003`x_0 = x_2`



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Example-4 `x=root(3)(48)`
(Previous example)
3. Newton Raphson method
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.