Home > Numerical methods calculators > Fixed Point Iteration method example

4. Fixed Point Iteration method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `x=sqrt(12)`
  4. Example-4 `x=root(3)(48)`
  5. Example-5 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

3. Newton Raphson method
(Previous method)
2. Example-2 `f(x)=2x^3-2x-5`
(Next example)

1. Algorithm & Example-1 `f(x)=x^3-x-1`





Algorithm
Fixed Point Iteration method Steps (Rule)
Step-1: First write the equation `x = phi(x)`
Step-2: Find points `a` and `b` such that `a < b` and `f(a) * f(b) < 0`.
Step-3: If `f(a)` is more closer to 0 then `f(b)`
then `x_0=a` else `x_0=b`
Step-4: `x_1 = phi(x_0)`
`x_2 = phi(x_1)`
`x_3 = phi(x_2)`
...
Repeat until `|f(x_i)-f(x_(i-1))| ~~ 0`

Example-1
1. Find a root of an equation `f(x)=x^3-x-1` using Fixed Point Iteration method

Solution:
Method-1
Let `f(x) = x^3-x-1`

Here `x^3-x-1=0`

`:.x^3=x+1`

`:.x=root (3)(x+1)`

`:.phi(x)=root (3)(x+1)`

Here
`x`012
`f(x)`-1-15



Here `f(1) = -1 < 0` and `f(2) = 5 > 0`

`:.` Root lies between `1` and `2`

`x_0 = (1 + 2)/2 = 1.5`


`x_1 = phi(x_0) = phi(1.5) = 1.35721`

`x_2 = phi(x_1) = phi(1.35721) = 1.33086`

`x_3 = phi(x_2) = phi(1.33086) = 1.32588`

`x_4 = phi(x_3) = phi(1.32588) = 1.32494`

`x_5 = phi(x_4) = phi(1.32494) = 1.32476`


Approximate root of the equation `x^3-x-1` using Iteration method is `1.32476` (After 5 iterations)

`n``x_0``x_1=phi(x_0)`UpdateDifference
`|x_1-x_0|`
21.51.35721`x_0 = x_1`0.14279
31.357211.33086`x_0 = x_1`0.02635
41.330861.32588`x_0 = x_1`0.00498
51.325881.32494`x_0 = x_1`0.00094
61.324941.32476`x_0 = x_1`0.00018



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Newton Raphson method
(Previous method)
2. Example-2 `f(x)=2x^3-2x-5`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.