Find a root of an equation `f(x)=2x^3-2x-5` using Fixed Point Iteration method
Solution:
Method-1
Let `f(x) = 2x^3-2x-5`
Here `2x^3-2x-5=0`
`:.2x^3=2x+5`
`:.x^3=(2x+5)/2`
`:.x=root (3)((2x+5)/2)`
`:.phi(x)=root (3)((2x+5)/2)`
Here
Here `f(1) = -5 < 0` and `f(2) = 7 > 0`
`:.` Root lies between `1` and `2`
`x_0 = (1 + 2)/2 = 1.5`
`x_1 = phi(x_0) = phi(1.5) = 1.5874`
`x_2 = phi(x_1) = phi(1.5874) = 1.59888`
`x_3 = phi(x_2) = phi(1.59888) = 1.60037`
`x_4 = phi(x_3) = phi(1.60037) = 1.60057`
Approximate root of the equation `2x^3-2x-5` using Iteration method is `1.60057` (After 4 iterations)
`n` | `x_0` | `x_1=phi(x_0)` | Update | Difference `|x_1-x_0|` |
2 | 1.5 | 1.5874 | `x_0 = x_1` | 0.0874 |
3 | 1.5874 | 1.59888 | `x_0 = x_1` | 0.01148 |
4 | 1.59888 | 1.60037 | `x_0 = x_1` | 0.0015 |
5 | 1.60037 | 1.60057 | `x_0 = x_1` | 0.00019 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then