Home > Numerical methods calculators > Muller method example

6. Muller method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

1. Algorithm & Example-1 `f(x)=x^3-x-1`
(Previous example)
3. Example-3 `f(x)=x^3+2x^2+x-1`
(Next example)

2. Example-2 `f(x)=2x^3-2x-5`





Find a root of an equation `f(x)=2x^3-2x-5` using Muller method

Solution:
Here `2x^3-2x-5=0`

Let `f(x) = 2x^3-2x-5`

Here
`x`012
`f(x)`-5-57


`x_0 = 1`

`x_1 = 2`

`x_2 = 1.5`


`1^(st)` iteration :

`f(x_0)=f(1)=2*1^(3)-2*1-5=-5`

`f(x_1)=f(2)=2(2)^(3)-2(2)-5=7`

`f(x_2)=f(1.5)=2(1.5)^(3)-2(1.5)-5=-1.25`

`h_1=x_1-x_0=2-1=1`

`h_2=x_2-x_1=1.5-2=-0.5`

`delta_1=(f(x_1)-f(x_0))/h_1=(7--5)/1=12`

`delta_2=(f(x_2)-f(x_1))/h_2=(-1.25-7)/-0.5=16.5`

`a=(delta_2-delta_1)/(h_2+h_1)=(16.5-12)/(-0.5+1)=9`

`b=a xx h_2 + d_2=9xx-0.5+16.5=12`

`c=f(x_2)=-1.25`

`x_3=x_2+(-2c)/(b +- sqrt(b^2-4ac))`

`x_3=x_2+(-2c)/(b +sign(b) sqrt(b^2-4ac))`

`=1.5+(-2 xx -1.25)/(12 + sqrt(12^2 - 4xx 9 xx -1.25))`

`=1.5+(2.5)/(12 + sqrt(189))`

`=1.5+(2.5)/(12 + 13.74773)`

`=1.5971`

Relative percent error
`varepsilon_(a^1)=|(x_3-x_2)/x_3| xx 100%=|(1.5971-1.5)/1.5971| xx 100%=6.07953%`

Now,
`x_0=x_1=2`

`x_1=x_2=1.5`

`x_2=x_3=1.5971`


`2^(nd)` iteration :

`f(x_0)=f(2)=2(2)^(3)-2(2)-5=7`

`f(x_1)=f(1.5)=2(1.5)^(3)-2(1.5)-5=-1.25`

`f(x_2)=f(1.5971)=2(1.5971)^(3)-2(1.5971)-5=-0.04672`

`h_1=x_1-x_0=1.5-2=-0.5`

`h_2=x_2-x_1=1.5971-1.5=0.0971`

`delta_1=(f(x_1)-f(x_0))/h_1=(-1.25-7)/-0.5=16.5`

`delta_2=(f(x_2)-f(x_1))/h_2=(-0.04672--1.25)/0.0971=12.39272`

`a=(delta_2-delta_1)/(h_2+h_1)=(12.39272-16.5)/(0.0971+-0.5)=10.19419`

`b=a xx h_2 + d_2=10.19419xx0.0971+12.39272=13.38253`

`c=f(x_2)=-0.04672`

`x_3=x_2+(-2c)/(b +- sqrt(b^2-4ac))`

`x_3=x_2+(-2c)/(b +sign(b) sqrt(b^2-4ac))`

`=1.5971+(-2 xx -0.04672)/(13.38253 + sqrt(13.38253^2 - 4xx 10.19419 xx -0.04672))`

`=1.5971+(0.09343)/(13.38253 + sqrt(180.99718))`

`=1.5971+(0.09343)/(13.38253 + 13.45352)`

`=1.60058`

Relative percent error
`varepsilon_(a^2)=|(x_3-x_2)/x_3| xx 100%=|(1.60058-1.5971)/1.60058| xx 100%=0.21753%`

Now,
`x_0=x_1=1.5`

`x_1=x_2=1.5971`

`x_2=x_3=1.60058`


`3^(rd)` iteration :

`f(x_0)=f(1.5)=2(1.5)^(3)-2(1.5)-5=-1.25`

`f(x_1)=f(1.5971)=2(1.5971)^(3)-2(1.5971)-5=-0.04672`

`f(x_2)=f(1.60058)=2(1.60058)^(3)-2(1.60058)-5=-0.00028`

`h_1=x_1-x_0=1.5971-1.5=0.0971`

`h_2=x_2-x_1=1.60058-1.5971=0.00348`

`delta_1=(f(x_1)-f(x_0))/h_1=(-0.04672--1.25)/0.0971=12.39272`

`delta_2=(f(x_2)-f(x_1))/h_2=(-0.00028--0.04672)/0.00348=13.33768`

`a=(delta_2-delta_1)/(h_2+h_1)=(13.33768-12.39272)/(0.00348+0.0971)=9.39535`

`b=a xx h_2 + d_2=9.39535xx0.00348+13.33768=13.37039`

`c=f(x_2)=-0.00028`

`x_3=x_2+(-2c)/(b +- sqrt(b^2-4ac))`

`x_3=x_2+(-2c)/(b +sign(b) sqrt(b^2-4ac))`

`=1.60058+(-2 xx -0.00028)/(13.37039 + sqrt(13.37039^2 - 4xx 9.39535 xx -0.00028))`

`=1.60058+(0.00056)/(13.37039 + sqrt(178.7779))`

`=1.60058+(0.00056)/(13.37039 + 13.37079)`

`=1.6006`

Relative percent error
`varepsilon_(a^3)=|(x_3-x_2)/x_3| xx 100%=|(1.6006-1.60058)/1.6006| xx 100%=0.00131%`


Approximate root of the equation `2x^3-2x-5=0` using Muller method is `1.6006`

`n``x_0``x_1``x_2``f(x_0)``f(x_1)``f(x_2)``a``b``c``x_3``varepsilon_(a^n`
1121.5-57-1.25912-1.251.59716.07953
221.51.59717-1.25-0.0467210.1941913.38253-0.046721.600580.21753
31.51.59711.60058-1.25-0.04672-0.000289.3953513.37039-0.000281.60060.00131



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Algorithm & Example-1 `f(x)=x^3-x-1`
(Previous example)
3. Example-3 `f(x)=x^3+2x^2+x-1`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.