Home > Numerical methods calculators > Muller method example

6. Muller method example ( Enter your problem )
  1. Algorithm & Example-1 f(x)=x^3-x-1
  2. Example-2 f(x)=2x^3-2x-5
  3. Example-3 f(x)=x^3+2x^2+x-1
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

2. Example-2 f(x)=2x^3-2x-5
(Previous example)
7. Halley's method
(Next method)

3. Example-3 f(x)=x^3+2x^2+x-1





Find a root of an equation f(x)=x^3+2x^2+x-1 using Muller method

Solution:
Here x^3+2x^2+x-1=0

Let f(x) = x^3+2x^2+x-1

Here
x01
f(x)-13


x_0 = 0

x_1 = 1

x_2 = 0.5


1^(st) iteration :

f(x_0)=f(0)=0^3+2*0^2+0-1=-1

f(x_1)=f(1)=1^3+2*1^2+1-1=3

f(x_2)=f(0.5)=0.5^3+2*0.5^2+0.5-1=0.125

h_1=x_1-x_0=1-0=1

h_2=x_2-x_1=0.5-1=-0.5

delta_1=(f(x_1)-f(x_0))/h_1=(3--1)/1=4

delta_2=(f(x_2)-f(x_1))/h_2=(0.125-3)/-0.5=5.75

a=(delta_2-delta_1)/(h_2+h_1)=(5.75-4)/(-0.5+1)=3.5

b=a xx h_2 + d_2=3.5xx-0.5+5.75=4

c=f(x_2)=0.125

x_3=x_2+(-2c)/(b +- sqrt(b^2-4ac))

x_3=x_2+(-2c)/(b +sign(b) sqrt(b^2-4ac))

=0.5+(-2 xx 0.125)/(4 + sqrt(4^2 - 4xx 3.5 xx 0.125))

=0.5+(-0.25)/(4 + sqrt(14.25))

=0.5+(-0.25)/(4 + 3.7749)

=0.4678

Relative percent error
varepsilon_(a^1)=|(x_3-x_2)/x_3| xx 100%=|(0.4678-0.5)/0.4678| xx 100%=6.8729%

Now,
x_0=x_1=1

x_1=x_2=0.5

x_2=x_3=0.4678


2^(nd) iteration :

f(x_0)=f(1)=1^3+2*1^2+1-1=3

f(x_1)=f(0.5)=0.5^3+2*0.5^2+0.5-1=0.125

f(x_2)=f(0.4678)=0.4678^3+2*0.4678^2+0.4678-1=0.008

h_1=x_1-x_0=0.5-1=-0.5

h_2=x_2-x_1=0.4678-0.5=-0.0322

delta_1=(f(x_1)-f(x_0))/h_1=(0.125-3)/-0.5=5.75

delta_2=(f(x_2)-f(x_1))/h_2=(0.008-0.125)/-0.0322=3.6385

a=(delta_2-delta_1)/(h_2+h_1)=(3.6385-5.75)/(-0.0322+-0.5)=3.9678

b=a xx h_2 + d_2=3.9678xx-0.0322+3.6385=3.5109

c=f(x_2)=0.008

x_3=x_2+(-2c)/(b +- sqrt(b^2-4ac))

x_3=x_2+(-2c)/(b +sign(b) sqrt(b^2-4ac))

=0.4678+(-2 xx 0.008)/(3.5109 + sqrt(3.5109^2 - 4xx 3.9678 xx 0.008))

=0.4678+(-0.016)/(3.5109 + sqrt(12.1994))

=0.4678+(-0.016)/(3.5109 + 3.4928)

=0.4656

Relative percent error
varepsilon_(a^2)=|(x_3-x_2)/x_3| xx 100%=|(0.4656-0.4678)/0.4656| xx 100%=0.491%

Now,
x_0=x_1=0.5

x_1=x_2=0.4678

x_2=x_3=0.4656


3^(rd) iteration :

f(x_0)=f(0.5)=0.5^3+2*0.5^2+0.5-1=0.125

f(x_1)=f(0.4678)=0.4678^3+2*0.4678^2+0.4678-1=0.008

f(x_2)=f(0.4656)=0.4656^3+2*0.4656^2+0.4656-1=0

h_1=x_1-x_0=0.4678-0.5=-0.0322

h_2=x_2-x_1=0.4656-0.4678=-0.0023

delta_1=(f(x_1)-f(x_0))/h_1=(0.008-0.125)/-0.0322=3.6385

delta_2=(f(x_2)-f(x_1))/h_2=(0-0.008)/-0.0023=3.5202

a=(delta_2-delta_1)/(h_2+h_1)=(3.5202-3.6385)/(-0.0023+-0.0322)=3.4334

b=a xx h_2 + d_2=3.4334xx-0.0023+3.5202=3.5124

c=f(x_2)=0

x_3=x_2+(-2c)/(b +- sqrt(b^2-4ac))

x_3=x_2+(-2c)/(b +sign(b) sqrt(b^2-4ac))

=0.4656+(-2 xx 0)/(3.5124 + sqrt(3.5124^2 - 4xx 3.4334 xx 0))

=0.4656+(0.0001)/(3.5124 + sqrt(12.3375))

=0.4656+(0.0001)/(3.5124 + 3.5125)

=0.4656

Relative percent error
varepsilon_(a^3)=|(x_3-x_2)/x_3| xx 100%=|(0.4656-0.4656)/0.4656| xx 100%=0.0026%


Approximate root of the equation x^3+2x^2+x-1=0 using Muller method is 0.4656 (After 3 iterations)

nx_0x_1x_2f(x_0)f(x_1)f(x_2)abcx_3varepsilon_(a^n
1010.5-130.1253.540.1250.46786.8729
210.50.467830.1250.0083.96783.51090.0080.46560.491
30.50.46780.46560.1250.00803.43343.512400.46560.0026



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2 f(x)=2x^3-2x-5
(Previous example)
7. Halley's method
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.