Home > Numerical methods calculators > Muller method example

6. Muller method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

2. Example-2 `f(x)=2x^3-2x-5`
(Previous example)
7. Halley's method
(Next method)

3. Example-3 `f(x)=x^3+2x^2+x-1`





Find a root of an equation `f(x)=x^3+2x^2+x-1` using Muller method

Solution:
Here `x^3+2x^2+x-1=0`

Let `f(x) = x^3+2x^2+x-1`

Here
`x`01
`f(x)`-13


`x_0 = 0`

`x_1 = 1`

`x_2 = 0.5`


`1^(st)` iteration :

`f(x_0)=f(0)=0^3+2*0^2+0-1=-1`

`f(x_1)=f(1)=1^3+2*1^2+1-1=3`

`f(x_2)=f(0.5)=0.5^3+2*0.5^2+0.5-1=0.125`

`h_1=x_1-x_0=1-0=1`

`h_2=x_2-x_1=0.5-1=-0.5`

`delta_1=(f(x_1)-f(x_0))/h_1=(3--1)/1=4`

`delta_2=(f(x_2)-f(x_1))/h_2=(0.125-3)/-0.5=5.75`

`a=(delta_2-delta_1)/(h_2+h_1)=(5.75-4)/(-0.5+1)=3.5`

`b=a xx h_2 + d_2=3.5xx-0.5+5.75=4`

`c=f(x_2)=0.125`

`x_3=x_2+(-2c)/(b +- sqrt(b^2-4ac))`

`x_3=x_2+(-2c)/(b +sign(b) sqrt(b^2-4ac))`

`=0.5+(-2 xx 0.125)/(4 + sqrt(4^2 - 4xx 3.5 xx 0.125))`

`=0.5+(-0.25)/(4 + sqrt(14.25))`

`=0.5+(-0.25)/(4 + 3.7749)`

`=0.4678`

Relative percent error
`varepsilon_(a^1)=|(x_3-x_2)/x_3| xx 100%=|(0.4678-0.5)/0.4678| xx 100%=6.8729%`

Now,
`x_0=x_1=1`

`x_1=x_2=0.5`

`x_2=x_3=0.4678`


`2^(nd)` iteration :

`f(x_0)=f(1)=1^3+2*1^2+1-1=3`

`f(x_1)=f(0.5)=0.5^3+2*0.5^2+0.5-1=0.125`

`f(x_2)=f(0.4678)=0.4678^3+2*0.4678^2+0.4678-1=0.008`

`h_1=x_1-x_0=0.5-1=-0.5`

`h_2=x_2-x_1=0.4678-0.5=-0.0322`

`delta_1=(f(x_1)-f(x_0))/h_1=(0.125-3)/-0.5=5.75`

`delta_2=(f(x_2)-f(x_1))/h_2=(0.008-0.125)/-0.0322=3.6385`

`a=(delta_2-delta_1)/(h_2+h_1)=(3.6385-5.75)/(-0.0322+-0.5)=3.9678`

`b=a xx h_2 + d_2=3.9678xx-0.0322+3.6385=3.5109`

`c=f(x_2)=0.008`

`x_3=x_2+(-2c)/(b +- sqrt(b^2-4ac))`

`x_3=x_2+(-2c)/(b +sign(b) sqrt(b^2-4ac))`

`=0.4678+(-2 xx 0.008)/(3.5109 + sqrt(3.5109^2 - 4xx 3.9678 xx 0.008))`

`=0.4678+(-0.016)/(3.5109 + sqrt(12.1994))`

`=0.4678+(-0.016)/(3.5109 + 3.4928)`

`=0.4656`

Relative percent error
`varepsilon_(a^2)=|(x_3-x_2)/x_3| xx 100%=|(0.4656-0.4678)/0.4656| xx 100%=0.491%`

Now,
`x_0=x_1=0.5`

`x_1=x_2=0.4678`

`x_2=x_3=0.4656`


`3^(rd)` iteration :

`f(x_0)=f(0.5)=0.5^3+2*0.5^2+0.5-1=0.125`

`f(x_1)=f(0.4678)=0.4678^3+2*0.4678^2+0.4678-1=0.008`

`f(x_2)=f(0.4656)=0.4656^3+2*0.4656^2+0.4656-1=0`

`h_1=x_1-x_0=0.4678-0.5=-0.0322`

`h_2=x_2-x_1=0.4656-0.4678=-0.0023`

`delta_1=(f(x_1)-f(x_0))/h_1=(0.008-0.125)/-0.0322=3.6385`

`delta_2=(f(x_2)-f(x_1))/h_2=(0-0.008)/-0.0023=3.5202`

`a=(delta_2-delta_1)/(h_2+h_1)=(3.5202-3.6385)/(-0.0023+-0.0322)=3.4334`

`b=a xx h_2 + d_2=3.4334xx-0.0023+3.5202=3.5124`

`c=f(x_2)=0`

`x_3=x_2+(-2c)/(b +- sqrt(b^2-4ac))`

`x_3=x_2+(-2c)/(b +sign(b) sqrt(b^2-4ac))`

`=0.4656+(-2 xx 0)/(3.5124 + sqrt(3.5124^2 - 4xx 3.4334 xx 0))`

`=0.4656+(0.0001)/(3.5124 + sqrt(12.3375))`

`=0.4656+(0.0001)/(3.5124 + 3.5125)`

`=0.4656`

Relative percent error
`varepsilon_(a^3)=|(x_3-x_2)/x_3| xx 100%=|(0.4656-0.4656)/0.4656| xx 100%=0.0026%`


Approximate root of the equation `x^3+2x^2+x-1=0` using Muller method is `0.4656` (After 3 iterations)

`n``x_0``x_1``x_2``f(x_0)``f(x_1)``f(x_2)``a``b``c``x_3``varepsilon_(a^n`
1010.5-130.1253.540.1250.46786.8729
210.50.467830.1250.0083.96783.51090.0080.46560.491
30.50.46780.46560.1250.00803.43343.512400.46560.0026



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2 `f(x)=2x^3-2x-5`
(Previous example)
7. Halley's method
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.