Home > Numerical methods calculators > Newton Raphson method example

3. Newton Raphson method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `x=sqrt(12)`
  4. Example-4 `x=root(3)(48)`
  5. Example-5 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

3. Example-3 `x=sqrt(12)`
(Previous example)
5. Example-5 `f(x)=x^3+2x^2+x-1`
(Next example)

4. Example-4 `x=root(3)(48)`





Find `root(3)(48)` using Newton Raphson method

Solution:
Let `x=48^(1/3)`

`:.x^3=48`

`:.x^3-48=0`

i.e. `f(x)=x^3-48`

`d/(dx)(x^3-48)=3x^2`


`d/(dx)(x^3-48)`

`=d/(dx)(x^3)-d/(dx)(48)`

`=3x^2-0`

`=3x^2`


`:. f'(x) = 3x^2`

Here
`x`01234
`f(x)`-48-47-40-2116



Here `f(3) = -21 < 0 and f(4) = 16 > 0`

`:.` Root lies between `3` and `4`

`x_0 = (3 + 4)/2 = 3.5`

`x_0 = 3.5`


`1^(st)` iteration :

`f(x_0)=f(3.5)=3.5^3-48=-5.125`

`f'(x_0)=f'(3.5)=3*3.5^2=36.75`

`x_1 = x_0 - f(x_0)/(f'(x_0))`

`x_1=3.5 - (-5.125)/(36.75)`

`x_1=3.6395`


`2^(nd)` iteration :

`f(x_1)=f(3.6395)=3.6395^3-48=0.2069`

`f'(x_1)=f'(3.6395)=3*3.6395^2=39.7369`

`x_2 = x_1 - f(x_1)/(f'(x_1))`

`x_2=3.6395 - (0.2069)/(39.7369)`

`x_2=3.6342`


`3^(rd)` iteration :

`f(x_2)=f(3.6342)=3.6342^3-48=0.0003`

`f'(x_2)=f'(3.6342)=3*3.6342^2=39.6233`

`x_3 = x_2 - f(x_2)/(f'(x_2))`

`x_3=3.6342 - (0.0003)/(39.6233)`

`x_3=3.6342`


Approximate root of the equation `x^3-48=0` using Newton Raphson method is `3.6342` (After 3 iterations)

`n``x_0``f(x_0)``f'(x_0)``x_1`Update
13.5-5.12536.753.6395`x_0 = x_1`
23.63950.206939.73693.6342`x_0 = x_1`
33.63420.000339.62333.6342`x_0 = x_1`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-3 `x=sqrt(12)`
(Previous example)
5. Example-5 `f(x)=x^3+2x^2+x-1`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.