Home > Numerical methods calculators > Secant method example

5. Secant method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `x=sqrt(12)`
  4. Example-4 `x=root(3)(48)`
  5. Example-5 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

3. Example-3 `x=sqrt(12)`
(Previous example)
5. Example-5 `f(x)=x^3+2x^2+x-1`
(Next example)

4. Example-4 `x=root(3)(48)`





Find `root(3)(48)` using Secant method

Solution:
Let `x=48^(1/3)`

`:.x^3=48`

`:.x^3-48=0`

i.e. `f(x)=x^3-48`

Here
`x`01234
`f(x)`-48-47-40-2116



`1^(st)` iteration :

`x_0 = 3` and `x_1 = 4`

`f(x_0) = f(3) = -21` and `f(x_1) = f(4) = 16`

`:. x_2 = x_0 - f(x_0) * (x_1 - x_0)/(f(x_1) - f(x_0))`

`x_2 = 3 - (-21) * (4 - 3)/(16 - (-21))`

`x_2 = 3.5676`

`:. f(x_2)=f(3.5676)=3.5676^3-48=-2.5936`


`2^(nd)` iteration :

`x_1 = 4` and `x_2 = 3.5676`

`f(x_1) = f(4) = 16` and `f(x_2) = f(3.5676) = -2.5936`

`:. x_3 = x_1 - f(x_1) * (x_2 - x_1)/(f(x_2) - f(x_1))`

`x_3 = 4 - 16 * (3.5676 - 4)/(-2.5936 - 16)`

`x_3 = 3.6279`

`:. f(x_3)=f(3.6279)=3.6279^3-48=-0.2513`


`3^(rd)` iteration :

`x_2 = 3.5676` and `x_3 = 3.6279`

`f(x_2) = f(3.5676) = -2.5936` and `f(x_3) = f(3.6279) = -0.2513`

`:. x_4 = x_2 - f(x_2) * (x_3 - x_2)/(f(x_3) - f(x_2))`

`x_4 = 3.5676 - (-2.5936) * (3.6279 - 3.5676)/(-0.2513 - (-2.5936))`

`x_4 = 3.6344`

`:. f(x_4)=f(3.6344)=3.6344^3-48=0.0047`


`4^(th)` iteration :

`x_3 = 3.6279` and `x_4 = 3.6344`

`f(x_3) = f(3.6279) = -0.2513` and `f(x_4) = f(3.6344) = 0.0047`

`:. x_5 = x_3 - f(x_3) * (x_4 - x_3)/(f(x_4) - f(x_3))`

`x_5 = 3.6279 - (-0.2513) * (3.6344 - 3.6279)/(0.0047 - (-0.2513))`

`x_5 = 3.6342`

`:. f(x_5)=f(3.6342)=3.6342^3-48=0`


Approximate root of the equation `x^3-48=0` using Secant method is `3.6342` (After 4 iterations)

`n``x_0``f(x_0)``x_1``f(x_1)``x_2``f(x_2)`Update
13-214163.5676-2.5936`x_0 = x_1`
`x_1 = x_2`
24163.5676-2.59363.6279-0.2513`x_0 = x_1`
`x_1 = x_2`
33.5676-2.59363.6279-0.25133.63440.0047`x_0 = x_1`
`x_1 = x_2`
43.6279-0.25133.63440.00473.63420`x_0 = x_1`
`x_1 = x_2`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-3 `x=sqrt(12)`
(Previous example)
5. Example-5 `f(x)=x^3+2x^2+x-1`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.