Home > Numerical methods calculators > Secant method example

5. Secant method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `x=sqrt(12)`
  4. Example-4 `x=root(3)(48)`
  5. Example-5 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

4. Example-4 `x=root(3)(48)`
(Previous example)
6. Muller method
(Next method)

5. Example-5 `f(x)=x^3+2x^2+x-1`





Find a root of an equation `f(x)=x^3+2x^2+x-1` using Secant method

Solution:
Here `x^3+2x^2+x-1=0`

Let `f(x) = x^3+2x^2+x-1`

Here
`x`01
`f(x)`-13



`1^(st)` iteration :

`x_0 = 0` and `x_1 = 1`

`f(x_0) = f(0) = -1` and `f(x_1) = f(1) = 3`

`:. x_2 = x_0 - f(x_0) * (x_1 - x_0)/(f(x_1) - f(x_0))`

`x_2 = 0 - (-1) * (1 - 0)/(3 - (-1))`

`x_2 = 0.25`

`:. f(x_2)=f(0.25)=0.25^3+2*0.25^2+0.25-1=-0.6094`


`2^(nd)` iteration :

`x_1 = 1` and `x_2 = 0.25`

`f(x_1) = f(1) = 3` and `f(x_2) = f(0.25) = -0.6094`

`:. x_3 = x_1 - f(x_1) * (x_2 - x_1)/(f(x_2) - f(x_1))`

`x_3 = 1 - 3 * (0.25 - 1)/(-0.6094 - 3)`

`x_3 = 0.3766`

`:. f(x_3)=f(0.3766)=0.3766^3+2*0.3766^2+0.3766-1=-0.2863`


`3^(rd)` iteration :

`x_2 = 0.25` and `x_3 = 0.3766`

`f(x_2) = f(0.25) = -0.6094` and `f(x_3) = f(0.3766) = -0.2863`

`:. x_4 = x_2 - f(x_2) * (x_3 - x_2)/(f(x_3) - f(x_2))`

`x_4 = 0.25 - (-0.6094) * (0.3766 - 0.25)/(-0.2863 - (-0.6094))`

`x_4 = 0.4888`

`:. f(x_4)=f(0.4888)=0.4888^3+2*0.4888^2+0.4888-1=0.0835`


`4^(th)` iteration :

`x_3 = 0.3766` and `x_4 = 0.4888`

`f(x_3) = f(0.3766) = -0.2863` and `f(x_4) = f(0.4888) = 0.0835`

`:. x_5 = x_3 - f(x_3) * (x_4 - x_3)/(f(x_4) - f(x_3))`

`x_5 = 0.3766 - (-0.2863) * (0.4888 - 0.3766)/(0.0835 - (-0.2863))`

`x_5 = 0.4635`

`:. f(x_5)=f(0.4635)=0.4635^3+2*0.4635^2+0.4635-1=-0.0073`


`5^(th)` iteration :

`x_4 = 0.4888` and `x_5 = 0.4635`

`f(x_4) = f(0.4888) = 0.0835` and `f(x_5) = f(0.4635) = -0.0073`

`:. x_6 = x_4 - f(x_4) * (x_5 - x_4)/(f(x_5) - f(x_4))`

`x_6 = 0.4888 - 0.0835 * (0.4635 - 0.4888)/(-0.0073 - 0.0835)`

`x_6 = 0.4655`

`:. f(x_6)=f(0.4655)=0.4655^3+2*0.4655^2+0.4655-1=-0.0002`


Approximate root of the equation `x^3+2x^2+x-1=0` using Secant method is `0.4655` (After 5 iterations)

`n``x_0``f(x_0)``x_1``f(x_1)``x_2``f(x_2)`Update
10-1130.25-0.6094`x_0 = x_1`
`x_1 = x_2`
2130.25-0.60940.3766-0.2863`x_0 = x_1`
`x_1 = x_2`
30.25-0.60940.3766-0.28630.48880.0835`x_0 = x_1`
`x_1 = x_2`
40.3766-0.28630.48880.08350.4635-0.0073`x_0 = x_1`
`x_1 = x_2`
50.48880.08350.4635-0.00730.4655-0.0002`x_0 = x_1`
`x_1 = x_2`



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Example-4 `x=root(3)(48)`
(Previous example)
6. Muller method
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.